Сборник рефератов

Дипломная работа: Разработка элективного курса по теме: "Экологический мониторинг водных объектов"

Опишите круговорот воды в городе?

Одновременно с образованием первичных гидросферы и атмосферы на земле зародился геологический круговорот воды. Этот планетарный круговорот воды продолжается до сих пор, в нем участвует и живая природа, теперь он имеет геобиохимический характер. «Любое проявление природной воды – глетчерный лед, безмерный океан, почвенный раствор, гейзер, минеральный источник – составляет единое целое, прямо или косвенно, но глубоко связанное между собой», - считал В.И. Вернадский.

Попытайтесь дать определение круговороту. Это очень важное понятие – необходимо осознать что в нашей крови есть вода, например, с древних ледников Антарктиды. Итак…

Круговорот воды в природе – это непрерывный процесс движения и обмена водой между различными составляющими гидросферы. Примерно за 3000 лет вся современная масса гидросферы испаряется, т.е. интенсивность возобновления воды достаточно велика. Обладая в миллион раз меньшей массой воды, чем масса гидросферы, живые организмы, главным образом растения, пропускают ее через себя (за время порядка 1 млн. лет). Таким образом, природная вода – это тоже продукт жизнедеятельности живых организмов. В круговороте воды на суше доминирующая роль принадлежит растениям, 2/3 осадков образуются за счет транспирации – испарения с поверхности листьев растений. «Вся масса воды, - писал В.И. Вернадский, - и в жидкой, и в газообразной, и в твердой форме находится в непрерывном движении, переполнена действенной энергией, сама вечно меняется и меняет все окружающее. Картина видимой природы определяется водой».

Важна ли была вода для древних? Как они относились к ней?

Велика роль воды в истории человеческой цивилизации. Вся практическая (хозяйственная) деятельность человека с самой глубокой древности связана с использованием воды. Вода – ценнейший природный ресурс, и нет ни одной отрасли хозяйства, где она не использовалась бы.

Как можно получить энергию из воды? Нарисуйте схему извлечения энергии из воды в домашних условиях.

Вода – один из важнейших техногенных источников получения энергии, прежде всего электрической. В настоящее время пятая часть вырабатываемой в мире электроэнергии приходится на гидроэлектростанции, при этом следует заметить, что и на тепловых электростанциях (в том числе и на АЭС) именно вода, превращенная в пар, вращает турбины и связанные с ними электрогенераторы.

Объемы воды в составляющих гидросферы

Около 70% поверхности Земли (361,2 млн. км2) покрыто водой морей и океанов. Вся же гидросфера занимает заметно большую поверхность, если учитывать ледники (16,3 млн. км2, или 11% суши), озера и реки (2,3 млн. км2, или 1,6%), а также болота и сильно увлажненные земли (около 3 млн. км2, или 2%). Таким образом, гидросфера на нашей планете – это основная часть ее поверхности: более 380 млн. км2, или свыше 75% площади поверхности Земли.

Гидросфера Земли содержит около 1,4 млрд. км3 воды. Данные о содержании воды в отдельных составляющих гидросферы приведены в таблице.

Когда отмечают, что 3/4 планеты покрыты водой, то имеют в виду только нижний предел этого значения, так как на самом деле поверхность, занимаемая гидросферой, существенно меняется. Ежегодно снежный покров зимой в Северном и Южном полушариях закрывает огромные пространства суши. Особенно большую территорию более 42 млн. км2 в среднем – снежный покров занимает на суше в зиму Северного полушария. Таким образом, в этот период площадь, занятая гидросферой, составляет более 83% поверхности Земли.

Общее количество воды в гидросфере постоянно, по крайней мере, в течение последнего геологического периода. Утечка воды в космос из-за фотодиссоциации молекул водяного пара в экзосфере компенсируется приходом воды на Землю за счет метеоритного вещества космического пространства (около 0,5 км3 в год) и первозданной (ювенильной) воды, извергаемой подводными вулканами и виде пара и горячих растворов (около 1 км3 в год). Учитывая вышесказанное и имея в виду планетарный круговорот воды, можно отнести воду к неисчерпаемым возобновляемым природным ресурсам.

Общие ресурсы пресной воды

Большое значение для жизни на Земле и хозяйственной деятельности человека имеет водный баланс пресной ветви планетарного круговорота воды. Пресной считается вода, в 1 л которой содержится не более 1 г. растворенных веществ (солей). Другими словами, пресная вода – это вода с соленостью не более 1%о (одной промилле). Для сравнения: средняя соленность морской воды составляет 35%о.

Как вы думаете связаны между собой соленая и пресная вода?

Отметим важнейший момент происхождения пресной воды – испарение и выпадение атмосферных осадков в системе «океан-атмосфера». Таким образом, соленая вода Мирового океана обеспечивает Землю пресной водой!

Где можно найти пресную воду? Многие города расположены по берегам рек, о чем это говорит?

Основные запасы пресной воды на земле сосредоточены в снежно-ледовых образованиях и в подземных водах – около 35 млн. км3, или 2,5% от всего объема воды в гидросфере. Хотя снежно-ледовые образования и подземные воды и играют существенную роль в водоснабжении некоторых районов, все же они труднодоступны, и в мировом масштабе их использование пока не имеет практического значения. Кроме того, пресные подземные воды располагаются лишь до глубины активного водообмена, формирующегося за счет атмосферных осадков, т.е. до глубины 200-1500 м.

Большая часть подземных вод, находящихся на нижних горизонтах, - соленые воды.

Непосредственно доступные пресные воды (пресные озера, содержащие 91 тыс. км3 воды, и реки) составляют лишь 0,007% от всей воды на земле, или 0,26% от общего запаса пресных вод на Земле. Самое большое в мире по запасам пресной воды оз. Байкал содержит 23 тыс. км3 воды, столько же – Великие американские озера. Таким образом, на эти озера приходится половина запасов воды пресных озер всего мира.

Структура водного фонда России такова:

Мировой океан 93,6%;

подземные воды – 4%;

ледники, снежный покров – 2 %;

реки, озера и другие источники пресной воды – 0,4%.

По данным Атласа мирового водного баланса, с поверхности суши ежегодно испаряется и вновь возвращается на сушу примерно 70 тыс. км3 воды; с поверхности Мирового океана ежегодно испаряется около 500 тыс. км3 воды, большая часть этой испарившейся воды возвращается обратно в океан в виде осадков, а примерно 1/10 часть выпадает над сушей, пополняя через поверхностный и подземный стоки водные запасы рек. Это разность между осадками и испарениями определяет значение речного стока. Кроме этого, речной сток в скрытом виде включает в себя часть ресурсов подземных вод, которые также относятся к источникам питания рек и поддерживают их водный режим.

К этому значению можно добавить ледяной сток Антарктиды – 2,5 тыс. км3/ год и Гренландии – 0,5 км3/год, исходя из этих цифр, можно оценивать экологическую ситуацию с ресурсами пресной воды на Земле.

Обеспеченность водными ресурсами регионов и стран

Для определения степени обеспеченности регионов водными ресурсами необходимо рассчитывать удельные характеристики – объем воды, приходящийся на единицу территории или на одного человека.

В среднем на одного жителя Земли приходится 8 тыс. м3 пресной воды в год, на одного жителя Европы – 4,6 тыс. м3/год, для Азиатского контингента эта величина равна 5,2 тыс. м3/год. За последние 20 лет произошло существенное уменьшение водообеспеченности Азии, Африки и Южной Америки в связи с демографическим взрывом в этих районах.

Если рассматривать отдельные страны, то более других обеспечена пресной водой Бразилия (свыше 140 тыс. м3/год), где располагается бассейн крупнейшей реки мира – Амазонки, на втором месте по суммарному стоку (около 30 тыс. м3/год) стоит Россия.

Представьте себе конфликт из-за уменьшения количества пресной воды.

Средние показатели по материкам и даже по странам не могут дать истинного представления об обеспечении водой. Это объясняется неравномерным распределением водных ресурсов по территории. Неравномерность распределения ресурсов поверхностных пресных вод характерна для всего мира, и она стала первопричиной напряженной ситуации в ряде регионов и стран. По данным Всемирной организации здравоохранения (ВОЗ), в настоящее время трудности, связанные с обеспечением питьевой водой, испытывают около 2 млрд. человек – треть населения земного шара.

Наглядный пример ситуация с водными ресурсами, сложившаяся в России. В целом Россия богата водными ресурсами: среднемноголетний суммарный речной сток в Российской Федерации составляет 4270 км3/год. Распределение речного стока по территории России крайне неравномерно и не соответствует расселению жителей, а также размещению производительных сил.

Около 90% общего поверхностного годового стока приходится на восточные районы страны, где проживает только около 25% населения страны. На европейскую часть, где сосредоточен основной промышленный и сельскохозяйственный потенциал страны, находятся крупные города и живет большая часть населения, приходится лишь 10% от общего годового речного стока. Таким образом, хозяйственно освоенные регионы Российской Федерации испытывают недостаток пресных водных ресурсов уже в силу только географических причин.

Одна из главных причин загрязнения водной оболочки Земли, приводящая к дефициту чистой пресной воды, - сброс в поверхностные (а через почву и в подземные) водоемы неочищенной или недостаточно очищенной воды, содержащей загрязняющие вещества.

Загрязнение окружающей природной среды – это поступление в нее веществ (твердых, жидких, газообразных), биологических агентов, энергии в количествах или концентрациях, превышающих естественный для данной экосистемы уровень.

Как отмечается в Декларации ООН «Об окружающей среде», любое вещество считается загрязнителем, если оно встречается в ненадлежащем месте, в ненадлежащем количестве и в ненадлежащее время. И эти место, количество и время «назначает» уже не природа – распорядительница жизни на Земле, а индустрия, создающая свои незамкнутые техногенные круговороты веществ, что приводит к антропогенному загрязнению всех компонентов биосферы.

Сточными водами называют воды, использованные на бытовые и производственные нужды и загрязненные при этом дополнительными примесями, изменившими их первоначальный химический состав и физические свойства.

Водный бассейн загрязняется атмосферными осадками, вымывающими из воздуха вредные техногенные выбросы, а также ливневыми стоками с городской территории. Интенсивное загрязнение водных объектов – поверхностных и грунтовых вод – дает современное сельское хозяйство с его массовым содержанием скота, интенсивным внесением в почву удобрений и использованием химических средств защиты растений от вредителей.

Значительное количество загрязнений поступает в водоемы от промышленных предприятий, а также от предприятий коммунального городского хозяйства. Например, сброс промышленных сточных вод в поверхностные водоемы Московского бассейна составляет значительную часть водопользования на территории Москвы и существенно отражается на состоянии водных экосистем и ресурсов Московского бассейна. По данным Департамента природопользования и охраны окружающей среды Правительства Москвы, доля сточных вод составляет почти 90% от всего объема воды, поступающей в реки Московского бассейна. По этой причине очистка сточных вод промышленных предприятий, расположенных в городе, до установленных санитарных норм приоритетное направление обеспечения нормальной экологической ситуации в этом мегаполисе.

Для обезвреживания загрязненных вод, главным образом их разбавления после очистки, ежегодно в мире затрачивается около 9000 км3 чистой воды, что составляет 20% устойчивого стока всех рек земного шара, принимаемого за запасы чистой пресной воды на Земле.

В России в настоящее время в поверхностные водоемы ежегодно сбрасывается более 70 км3 сточных вод, 30% из которых – неочищенные или недостаточно очищенные. При полной очистке современными методами сточные воды в лучшем случае бывают очищены лишь на 90%, и они вносят в водоемы не меньше загрязнений, чем все неочищенные сточные воды 50 лет назад.

Необходимость очистки сточных вод (стоков) возникла в связи с непрерывным увеличением водопотребления и, соответственно, с образованием значительного количества сточных вод. К сожалению, несмотря на высокую эффективность работы очистных сооружений, многие стоки «нормативно очищенных вод» несут большое количество остаточных загрязнений, превышающих природную самоочищаемость водоемов.

Экологические исследования указали на тесную связь между выживаемостью отдельных представителей водной биоты – флоры и фауны – и степенью загрязнения воды. Изменение состава водной флоры отмечено даже при кратковременном увеличении загрязненности воды. К сожалению, такие тонкие биоиндикаторы не дают количественной оценки загрязненности воды, но могут служить сигналом о наличии неблагоприятных экологических условий. Количественная оценка загрязненности воды возможна лишь в том случае, если степень загрязнения достаточно велика и возможно нарушение нормального состояния водной экосистемы. Такой количественный анализ необходимо делать перед тем, как вода будет сброшена в почву и поверхностные водоемы.

Давайте теперь возьмем карту нашего города и найдем там нашу школу и близлежащие источники загрязнения воды.

Завод, находящийся к западу наверняка загрязняет воду, которую мы пьем.

Кажется, около него есть хвостохранилище. А почему бы нам не сделать в лаборатории анализ этой воды?


Занятие 2. Исследование качества воды.

Органические показатели воды

1. Содержание взвешенных частиц

Этот показатель качества воды определяют фильтрованием определенного объема воды через бумажный фильтр и последующим высушиванием осадка на фильтре в сушильном шкафу до постоянной массы.

Для анализа берут 500-1000 мл. воды. Фильтр перед работой взвешивают. После фильтрования осадок с фильтром высушивают до постоянной массы при 1050С, охлаждают в эксикаторе и взвешивают. Весы должны обладать высокой чувствительностью, лучше использовать аналитические весы.

Содержание взвешенных веществ в мг/л в испытуемой воде определяют по формуле

(m1 m2) × 1000/V,

где m1 - масса бумажного фильтра с осадком взвешенных частиц, г; m2 - масса бумажного фильтра до опыта, г; V- объем воды для анализа, л.

ПДК = 10 мг/л.

2. Цвет (окраска)

При загрязнении водоема стоками промышленных предприятий вода может иметь окраску, не свойственную цветности природных вод. Для источников хозяйственно-питьевого водоснабжения окраска не должна обнаруживаться в столбике высотой 20 см, для водоемов культурно-бытового назначения – 10 см.

Диагностика цвета – один из показателей состояния водоема. Для определения цветности воды нужны стеклянный сосуд и лист белой бумаги. В сосуд набирают воду и на белом фоне бумаги определяют цвет воды (голубой, зеленый, серый, желтый, коричневый) показатель определенного вида загрязнения.


3. Прозрачность

Прозрачность воды зависит от нескольких факторов: количества взвешенных частиц ила, глины, песка, микроорганизмов, содержания химических соединений.

Для определения прозрачности воды используют прозрачный мерный цилиндр с плоским дном, в который наливают воду, подкладывают под цилиндр на расстоянии 4 см. от его дна шрифт, высота букв которого 2 мм, а толщина линий букв – 0,5 мм, и сливают воду до тех пор, пока сверху через слой воды не будет виден этот шрифт. Измеряют высоту столба оставшейся воды линейкой и выражают степень прозрачности в сантиметрах. При прозрачности воды менее 3 см. водопотребление ограничивается. Уменьшение прозрачности природных вод свидетельствует об их загрязнении.

4. Запах

Запах воды обусловлен наличием в ней пахнущих веществ, которые попадают в нее естественным путем и со сточными водами. Запах воды водоемов, обнаруживаемый непосредственно в воде или (водоемов хозяйственно-питьевого назначения) после ее хлорирования, не должен превышать 2 баллов. Определение основано на органолептическом исследовании характера и интенсивности запахов воды при 20 и 600 С. Характер и интенсивность запаха определяют по предлагаемой методике (табл. 2,3).

Таблица 2

Характер и род запаха воды естественного происхождения

Характер запаха

Примерный род запаха

Ароматический Огуречный, цветочный
Болотный Илистый, тинистый
Гнилостный Фекальный, сточной воды
Древесный Мокрой щепы, древесной коры
Землистый Прелый, свежевспаханной земли, глинистый
Плесневый Затхлый, застойный
Рыбный Рыбы, рыбьего жира
Сероводородный Тухлых яиц
Травянистый Скошенной травы, сена
Неопределенный Не подходящий под предыдущие определения

Таблица 3

Интенсивность запаха воды

Балл Интенсивность запаха

Качественная характеристика

0 - Отсутствие ощутимого запаха
1 Очень слабая Запах, не поддающийся обнаружению потребителем, но обнаруживаемый в лаборатории опытным исследователем
2 Слабая Запах, не привлекающий внимания потребителя, но обнаруживаемый, если на него обратить внимание
3 Заметная Запах, легко обнаруживаемый и дающий повод относиться к воде с неодобрением.
4 Отчетливая Запах, обращающий на себя внимание и делающий воду непригодной для питья
5 Очень сильная Запах настолько сильный, что вода становится непригодной для питья

Запахи искусственного происхождения (от промышленных выбросов, для питьевой воды – от обработки воды реагентами на водопроводных сооружениях и т.п.) называются по соответствующим веществам: хлорфенольный, камфорный, бензиновый, хлорный и т.п.

Интенсивность запаха также оценивается при 20 и 600С по 5-балльной системе согласно таблице.

Запах воды следует определять в помещении, в котором воздух не имеет постороннего запаха. Желательно, чтобы характер и интенсивность запаха отмечали несколько исследователей.


Занятие 3. Определение качества воды методами химического анализа

Водородный показатель (рН)

Питьевая вода должна иметь нейтральную реакцию (рН около 7). Значение рН воды водоемов хозяйственного, питьевого, культурно-бытового назначения регламентируется в пределах 6,5 – 8,5.

Оценивать значение рН можно разными способами.

1.Приближенное значение рН определяют следующим образом. В пробирку наливают 5 мл исследуемой воды, 0,1 мл универсального индикатора, перемешивают и по окраске раствора определяют рН:

·  розово-оранжевая – рН около 5;

·  светло-желтая – 6;

·  зеленовато-голубая – 8;

2.Можно определить рН с помощью универсальной индикаторной бумаги, сравнивая ее окраску со шкалой.

3.Наиболее точно значение рН можно определить на рН-метре или по шкале набора Алямовского.

Жесткость воды

Различают общую, временную и постоянную жесткость воды, Общая жесткость обусловлена главным образом присутствием растворимых соединений кальция и магния в воде. Временнная жесткость иначе называется устранимой или карбонатной. Она обусловлена наличием гидрокарбонатов кальция и магния. Постоянная (некабонатная) жесткость вызвана присутствием других растворимых солей кальция и магния.

Общая жесткость варьируется в широких пределах в зависимости от типа пород и почв, слагающих бассейн водосбора, а также от сезона года. Значение общей жесткости в источниках централизованного водоснабжения допускается до 7 ммоль × экв./л, в отдельных случаях по согласованию с органами санитарно-эпидемиологической службы – до 10 ммоль × экв./л.

При жесткости до 4 ммоль × экв./л – средней жесткости, 8-12 ммоль × экв./л – жесткой, более 12 ммоль × экв./л. – очень жесткой.

Методами химического анализа обычно определяют жесткость общую (Ж0) и карбонатную (Жк), а некарбонатную (Жн) рассчитывают как разность Ж0 - Жк.

Определение карбонатной жесткости воды

Расчет концентраций карбонат- и гидрокарбонат-ионов

В склянку наливают 10 мл анализируемой воды, добавляют 5-6 капель фенолфталеина. Если при этом окраска не появляется, то считается, что карбонат-ионы в пробе отсутствуют. В случае возникновения розовой окраски пробу титруют 0,05 н. Раствором соляной кислоты до обесцвечивания. Концентрацию карбонат-ионов рассчитывают по формуле

 C = V (HCl) × 0,05 × 60 × 1000 = V (HCl) × 300

где ск концентрация карбонат-иона, мг/л; V (HCl) - объем соляной кислоты, израсходованной на титрование, мл.

Затем в той же пробе определяют концентрацию гидрокарбонат-ионов. К пробе добавить 1-2 капли метилового оранжевого. При этом проба приобретает желтую окраску. Титруют пробу раствором 0,05 н. Соляной кислоты до перехода желтой окраски в розовую. Концентрацию гидрокарбонат-ионов рассчитывают по формуле:

C гк = V (HCl) × 0,05 × 61 × 1000 = V (HCl) × 305

где с гк концентрация гидрокарбонат-иона, мг/л; V (HCl) - объем соляной кислоты, израсходованной на титрование, мл.

Карбонатную жесткость Жк рассчитывают, суммируя значения концентраций карбонат- и гидрокарбонат-ионов по формуле


Жк = Ск × 0,0333 + Сгк × 0,0164,

где 0,0333 и 0,0164 – коэффициенты, равные значениям, обратным эквивалентным массам этих анионов.

Определение нитратов и нитритов

Предельно допустимая концентрация (ПДК) нитритов в питьевой воде водоемов составляет 3,3 мг/л, нитратов – 45 мг/л.

На часовое или предметное стекло помещают три капли раствора дифениламина, приготовленного на концентрированной серной кислоте, и одну-две капли исследуемой воды. В присутствии нитрат- и нитрит- ионов появляется синее окрашивание, интенсивность которого зависит от их концентрации.

Таблица 4

Ориентировочное суммарное содержание аммиака и ионов аммиака в воде

Окрашивание при рассмотрении

Аммиак и ионы аммиака

сбоку

сверху

мг азота/л

мг ___/л

Нет Нет 0,04 0,05
Нет Чрезвычайно слабо-желтоватое 0,08 0,1
Чрезвычайно слабо-желтоватое Слабо-желтоватое 0,2 0,3
Очень слабо-желтоватое Желтоватое 0,4 0,5
Слабо-желтоватое Светло-желтое 0,8 1,0
Желтое Буровато-желтое 2,0 2,5
Мутноватое, резко-желтое Бурое, раствор мутный 4,0 5,0
Интенсивно-бурое, раствор мутный Бурое, раствор мутный Более 10,0 Более 10,0

Определение хлоридов и сульфатов

Концентрация хлоридов в водоемах – источниках водоснабжения допускается до 350 мг/л.

В водах рек северной части России хлоридов содержится обычно немного, не более 10 мг/л, в южных районах – до десятков и сотен мг/л. Много хлоридов попадает в водоемы со сбросами хозяйственно-бытовых и промышленных сточных вод. Этот показатель весьма важен при оценке санитарного состояния водоема.

Качественное определение хлоридов с приближенной количественной оценкой проводят следующим образом. В пробирку отбирают 5 мл. исследуемой воды и добавляют 3 капли 10%-ного раствора нитрата серебра. Приблизительное содержание хлоридов определяют по осадку или помутнению (табл. 5).

Таблица 5

Определение содержания хлоридов

Осадок или помутнение

Концентрация хлоридов, мг/л

Опалесценция или слабая муть 1-10
Сильная муть 10-50
Образуются хлопья, но осаждаются не сразу 50-100
Белый объемистый осадок Более 100

Качественное определение хлоридов проводят титрованием пробы анализируемой воды нитратом серебра в присутствии хромата калия как индикатора. Нитрат серебра дает с хлорид-ионами белый осадок, а с хроматом калия – кирпично-красный осадок хромата серебра. Из образовавшихся осадков меньшей растворимостью обладает хлорид серебра. Поэтому лишь после того, как хлорид-ионы будут связаны, начинается образование красного хромата серебра. Появление слабо-оранжевой окраски свидетельствует о конце реакции. Титрование можно проводить в нейтральной или слабощелочной среде. Кислую анализируемую воду нейтрализуют гидрокарбонатом натрия.

В коническую колбу помещают 100 мл воды, прибавляют 1 мл 5%-ного раствора хромата калия и титруют 0,05 н. Раствором нитрата серебра при постоянном взбалтывании до появления слабо-красного окрашивания.

Содержание хлоридов (Х) в мг/л вычисляют по формуле.

X = 1,773 × V × 1000,

100

где 1,773 – масса хлорид- ионов (мг), эквивалентная 1 мл точно 0,05 н. раствора нитрата серебра; V - объем раствора нитрата серебра, затраченного на титрование, мл.

Качественное определение сульфатов с приближенной количественной оценкой проводят так. В пробирку вносят 10 мл исследуемой воды, 0,5 мл соляной кислоты (1:5) и 2 мл 5%-ного раствора хлорида бария, перемешивают. По характеру выпавшего осадка определяют ориентировочное содержание сульфатов при отсутствии мути концентрация сульфат - ионов менее 5 мг/л; при слабой мути, появляющейся не сразу, а через несколько минут, - 5-10 мг/л; при слабой мути, появляющейся сразу после добавления хлорида бария, - 10 100 мг/л; сильная, быстро оседающая муть свидетельствует о достаточно высоком содержании сульфат- ионов (более 100 мг/л).

Определение остаточного хлора в водопроводной воде

Для обеспечения надежности обеззараживания воды необходимо, чтобы после завершения процесса хлорирования в ней содержалось 0,3 – 0,5 мг/л свободного остаточного хлора.

В коническую колбу вместимостью 500 мл наливают 250 мл водопроводной воды (перед отбором пробы воды следует пропускать ее из крана длительное время), 10 мл. буферного раствора с рН 4,6 и 5 мл 10%-ного раствора иодида калия. Затем титруют выделившийся иод 0,005 н. растовором тиосульфата натрия до бледно-желтой окраски, приливают 1 мл 1%-ного раствора крахмала и титруют раствор до исчезновения синей окраски.

Содержание остаточного хлора в воде (Х) вычисляют по формуле.

X = V1 × K × 0,177 × 1000,

V

где V - объем 0,005 н. Раствора тиосульфата натрия, израсходованного на титрование, мл; К поправка к концентрации тиосульфата; 0,177 – масса активного хлора, соответствующая 1 мл 0,005 н. раствора тиосульфата натрия, мг; V - объем воды, взятой для анализа, мл.

Приготовление буферного раствора. Для приготовления буферного ацетатного раствора с рН = 4,6 смешивают 102 мл 1 М раствора уксусной кислоты (60 г 100%-ной кислоты в 1 л воды) и 98 мл 1 М раствора ацетата натрия (136,1 г кристаллической соли в 1 л воды) и доводят объем до 1 л прокипяченной дистиллированной водой.

Качественное обнаружение катионов тяжелых металлов

Обнаружение свинца

В пробирку с пробой воды вносят по 1 мг 50%-ного раствора уксусной кислоты и перемешивают. Добавляют по 0,5 мл 10%-ного раствора дихромата калия, при наличии в исследуемой пробе ионов свинца выпадает желтый осадок хромата свинца. Пробирку встряхивают и через 10 мин приступают к определению. Содержимое пробирки рассматривают сверху на черном фоне, верхнюю часть пробирки до уровня жидкости прикрывают со стороны света картоном.

Концентрацию свинца в анализируемой воде рассчитывают по формуле

С = а / V (мг/л),


где а содержание свинца в соответствующей пробирке шкалы, мг; V - объем взятой на анализ воды, л.

Обнаружение железа

Предельно допустима концентрация (ПДК) общего железа в воде водоемов и питьевой воде составляет 0,3 мг/л, лимитирующий показатель вредности органолептический.

Обнаружение общего железа. В пробирку помещают 10 мл исследуемой воды, прибавляют 1 каплю концентрированной азотной кислоты, несколько капель раствора пероксида водорода и примерно 0,5 мл раствора роданида калия. При содержании железа 0,1 мг/л появляется розовое окрашивание, а при более высоком – красное.

Колориметрический экспресс-метод

1.         Обнаружение железа (III). К 5 мл исследуемой воды прибавляют 3 капли роданида аммония (или калия), перемешивают и сравнивают окраску пробы со шкалой.

2.         Обнаружение общего железа. К 5 мл исследуемой воды прибавляют 1 каплю бромного раствора и 3 капли раствора соляной кислоты. Через 5 мин прибавляют 3 капли раствора роданида аммония (калия), перемешивают и сравнивают со шкалой (табл. 6.).

Шкала для определения железа

Железо мг/л 0,1 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6
Раствор 1 мл 1,0 1,7 3,2 4,7 6,2 7,8 9,2 10,4 11,6
Раствор 2 мл 0,7 1,7 3,4 5,1 7,0 9,0 11,1 13,7 16,3
Вода До 50 мл

Приготовление растворов:

·          роданида аммония: 3,8 растворяют в 100 мл дистиллированной воды;

·          гексацианоферрата (III) калия: 5,5 г растворяют в 100 мл дистиллированной воды;

·          гексацианоферрата (II) калия: 5,25 г растворяют в 100 мл дистиллированной воды;

·          бромного раствора: к 2,5 г KBrO3 прибавляют 5 г KBr растворяют в 100 мл дистиллированной воды;

·          раствора 1: к 2 мл 10%-ного раствора хлорида платины прибавляют 10 мл концентрированной соляной кислоты и доводят до 100 мл дистиллированной водой;

·          раствора 2:2,5 г хлорат кобальта растворяют в 50 мл дистиллированной воды, прибавляют 10 мл концентрированной соляной кислоты и доводят объем до 100 мл.

3. Обнаружение железа (II). Определяют расчетным путем – по разности между содержанием общего железа и железа (III).

Обнаружение меди

ПДК меди в воде составляет 0,1 мг/л, лимитирующий показатель вредности органолептический.

Качественное обнаружение меди

В фарфоровую чашку помещают 3-5 мл исследуемой воды, осторожно выпаривают досуха и наносят на периферийную часть пятна каплю концентрированного раствора аммиака. Появление интенсивно-синей или фиолетовой окраски свидетельствует о присутствии ионов меди [38].


Тестовые задания

Вода как среда жизни. Основы жизнедеятельности гидробионтов

1. Доля общих запасов пресной воды от всей гидросферы Земли составляет …

а) 1,23 %;

б) 5,05 %;

в) 10,5 %;

г) 2,53 %.+

2. Большая часть воды поверхностных водоемов сосредоточена...

а) в реках;

б) в озерах; +

в) в болотах.

3. Высокие температуры кипения и плавления воды объясняются тем, что тепло расходуется на...

а) приращение внутренней энергии молекул;

б) разрыв ковалентных связей;

в) разрыв водородных связей. +

4. Наибольшая плотность пресной воды достигается при температуре …

а) 0 градусов;

б) 4 градуса; +

в) 18 градусов.

5. Вязкость природной воды с повышением температуры …

а) уменьшается; +

б) увеличивается;

в) не меняется.

6. Плотность природной воды с повышением температуры до 4 градусов …

а) уменьшается;

б) увеличивается; +

в) не меняется.

7. Плотность природной воды с повышением температуры выше 4 градусов …

а) увеличивается;

б) уменьшается; +

в) не меняется.

8. Плотность природной воды с понижением температуры после 0 градусов …

а) уменьшается; +

б) увеличивается;

в) не меняется.

9. Поверхностное натяжение в природных водах из-за присутствия органических веществ …

а) повышается;

б) снижается; +

в) не меняется.

10. Цветность воды выражается в условных единицах...

а) градусах; +

б) процентах;

в) сантиметрах.

11. Цветность воды определяют при помощи...

а) колориметра; +

б) трубки Пито;

в) индекса Вудивисса.

12. Неприхотливых по отношению к грунтам гидробионтов называют...

а) эвригалинными;

б) эвридафическими; +

в) эврибатными.

13. Неприхотливых по отношению к различным типам водоемов гидробионтов называют...

а) эвригалинными;

б) эврибионтными; +

в) стенобионтными;

г) эврибатными.

14. Обитателей соленых водоемов называют...

а) ацидофилами;

б) псаммофилами;

в) галофилами. +

15. Обитателей песчаного грунта называют...

а) пелофилы;

б) литофилы;

в) псаммофилы. +

16 Гидробионты – обитатели дна – это...

а) нейстонты;

б) плейстонты;

в) бентонты; +

г) нектонты.

17. Гидробионты – обитатели поверхностной пленки воды – это...

а) эпинейстонты; +

б) сейстонты;

в) бентонты;

г) нектонты.

18. Гидробионты – обитатели толщи воды – это...

а) нейстонты;

б) плейстонты;

в) бентонты;

г) планктонты. +

19. Гидробионты, способные противостоять течениям, – это...

а) нейстонты;

б) плейстонты;

в) бентонты;

г) нектонты. +

20. Гидробионты, не способные противостоять течениям, – это...

а) нейстонты;

б) планктонты; +

в) бентонты;

г) нектонты.

21. Гидробионты – обитатели рек – это...

а) псаммофилы;

б) реофилы; +

в) стагнофилы;

г) геофилы.

2. Парящие в толще воды организмы – это …

а) бентонты;

б) планктонты; +

в) плейстонты.

23. Организмы, постоянно живущие в воде, – это …

а) голобионты; +

б) амфибионты;

в) эдафобионты.

24. Перекапывание грунта, рытье нор, сооружение трубок и т.п. есть...

а) биоседиментация;

б) биодислокация; +

в) биостабилизация.

25. Наибольшее значение для водного населения имеют следующие газы …

а) кислород, углекислый газ, сероводород, метан; +

б) кислород, углекислый газ, азот, метан;

в) кислород, аргон, азот, неон;

г) кислород, углекислый газ, азот.

26. Содержание кислорода в воде зависит от...

а) температуры; +

б) времени суток;

в) обоих факторов.

27. В водных местообитаниях более всего лимитирует первичную продукцию нехватка...

а) углерода;

б) азота;

в) фосфора. +

28. Стеноионные формы гидробионтов, предпочитающие кислые воды, называются...

а) ацидофильными; +

б) алкалофильными;

в) галофильными.

29. Мерой содержания в воде растворенного органического вещества служит …

а) прозрачность;

б) окисляемость; +

в) цветность.

30. Мерой содержания в воде взвешенных минеральных частиц служит …

а) прозрачность; +

б) окисляемость;

в) вязкость.

31. Запах воды определяют …

а) гидрологически;

б) органолептически; +

в) гидрометрически.

32. Вкус воды определяют …

а) органолептически; +

б) гидрологически;

в) гидрометрически.

33. Болотная вода, богатая гумусовыми веществами …

а) зеленая;

б) темно-коричневая; +

в) бесцветная.

34. Прудовая вода в норме …

а) прозрачная;

б) светло-коричневая;

в) зеленая. +

35. Запах карболовой кислоты имеют воды, содержащие …

а) гумус;

б) фенолы; +

в) тяжелые металлы.

36. Скорость воды в реках определяют …

а) диском Секки;

б) органолептически;

в) трубкой Пито. +

37. Самая высокая скорость водного потока в реке располагается …

а) на поверхности;

б) в толще; +

в) у дна.

38. Совокупность органоминеральных частиц, заселенных бактериями, есть...

а) сестон;

б) плейстон;

в) детрит. +

39. Распределение слоев воды в непроточных водоемах есть...

а) стратификация; +

б) эвтрофикация;

в) стагнация.

40. Водные животные, предпочитающие быстрое течение, называются...

а) стагнофилами;

б) реофилами; +

в) остракофилами.

41. Зона водоема с достаточной освещенностью для фотосинтеза –...

а) эвфотическая; +

б) дисфотическая;

в) афотическая.

42. Наименьшая экологическая валентность у гидробионтов обычно наблюдается на...

а) ранних стадиях развития; +

б) средних стадиях развития;

в) поздних стадиях развития.

43. Животные, преодолевающие водные течения, –...

а) плейстонты;

б) бентонты;

в) нектонты. +

44. Движение рыб против течения для удержания в своем месообитании –...

а) хоминг;

б) реореакция; +

в) миграция.

45. Вся совокупность живого и мертвого органического вещества в водоеме есть...

а) кормовая база водоема;

б) кормность водоема;

в) кормовые ресурсы водоема. +

46. Совокупность пищевых компонентов, которая может быть использована потребителями ...

а) кормовая база; +

б) кормовые ресурсы;

в) обеспеченность кормом.

47. Часть кормовой базы водоема, действительно используемая гидробионтами, –...

а) кормовые ресурсы;

б) кормность; +

в) обеспеченность кормом.

48. Отношение количества потребляемой пищи к необходимому количеству есть...

а) кормовая база;

б) кормовые ресурсы;

в) обеспеченность кормом. +

49. Высшие растения водоемов в пищу используется гидробионтами...

а) преимущественно в живом виде;

б) преимущественно после отмирания в виде детрита; +

в) в равной степени и в той, и в другой форме.

Страницы: 1, 2, 3


© 2010 СБОРНИК РЕФЕРАТОВ