Сборник рефератов

Курсовая работа: Разработка плана изготовления и расчет операционных размеров деталей газотурбинной установки

Табл.4.1


5. Разроботка предварительного плана обработки детали

Исходными данными для разработки маршрутного технологического процесса изготовления детали являются заданный чертеж детали и тип производства.

При проектировании маршрутного технологического процесса необходимо разработать графический план обработки заготовки, установить состав и последовательность операций, указав для каждой операции обрабатываемые поверхности, методы их обработки и характеристики точности, схемы установок и позиции, тип оборудования.

Для проектирования плана обработки рациональна определенная последовательность решений:

· составление укрупненного плана обработки заготовки, устанавливающего рациональную последовательность формообразующих операций, а также наличие и место в плане обработки термических, слесарных, контрольных и других вспомогательных операций;

· выявление конструкторских баз расположения поверхностей и отсчета координатных размеров связей с ними исходных поверхностей заготовки и необрабатываемых поверхностей детали.

Весь план обработки состоит из четырех этапов: черновой получистовой, чистовой и отделочный.

1. Черновой этап состоит из черновых операций, на которых снимается до 60-70 % припуска на обработку. На этом этапе достигается равномерное распределение припусков на дальнейшую обработку, и удаляются дефекты на поверхности заготовки.

2. Получистовой этап обработки выполняется, как правило, в той же последовательности, что и черновая обработка, но более точно, с меньшими режимами резания, при этом устраняют коробление, возникшее после первого этапа.

3. На чистовом этапе снимается до 30 % припуска, и детали придается окончательная форма.

4. Отделочный этап включает операции, обеспечивающие заданную точность и чистоту рабочей поверхности.

Для большинства операций соблюдается принцип совмещения и постоянства баз, и такие базы называются чистыми. Исключение составляют первые операции, на которых базы уступают по точности и качеству обрабатываемым поверхностям. Это черновые базы, которые могут быть использованы только один раз и для координации только одной из обрабатываемых поверхностей. То есть обработку детали начинаем с той поверхности, которая будет служить установочной базой для дальнейших операций.

Обработку поверхностей точным взаимным расположением включаем в одну операцию, и выполняем за одно закрепление заготовки. А черновую и чистовую обработки заготовок со значительными припусками выделяем в отдельные операции, так как совмещение черновых и чистовых переходов в одной операции приводит к снижению точности обработки вследствие повышенного износа инструмента на черновых операциях.

План обработки строим так, чтобы последними обрабатывались поверхности, к которым предъявляются повышенные требования по точности, а в начале те поверхности, к точности которых предъявлены меньшие требования. При определении последовательности переходов операции, предусматриваем опережающее выполнение тех переходов, которые подготавливают возможность осуществления следующих за ними переходов.

Последовательность операций отражена в плане обработки.


6. Расчет припусков и операционных размеров на диаметральные поверхности

Величину минимального припуска на диаметральные поверхности определяют по формуле:

,

где Rzi-1 и hi-1 – соответственно шероховатость и глубина дефектного слоя на предыдущей ступени обработки; Дi-1 – величина пространственных отклонений на предыдущей ступени обработки; еi – погрешность установки детали в данной ступени обработки.

Величина пространственных отклонений определяется по формуле:

,

где Дкор – величина коробления поковки; Дсм – величина смещения поковки.

Величина пространственных отклонений в процессе обработки полностью не исчезает, а значительно уменьшается по величине. Величина остаточных отклонений определяется по величине коэффициента уточнения формы.

.

Номинальный припуск:

,


где Ti-1 – допуск размера на предыдущей обработке.

Максимальный припуск для:

1) валов

,

2)  отверстий

.

Минимальный припуск для:

1) валов

,

2)  отверстий

.

Расчетный диаметр для:

1)  валов

,

2)  отверстий

.


Результаты расчета операционных припусков и операционных размеров диаметральных поверхностей нормативным методом приведены в табл. 6.2, а расчетно-аналитическим методом в табл. 6.1.


Таблица 6.1

Элементарная пов-ть детали. Технологический маршрут ее обработки Элементы припуска, мкм. Расчетный припуск, мкм Допуск размера Т, мм Расчетный припуск 2Zном.р мм. Расчетный размер D, мм. Принятые размеры, мм. Принятые припуски, мм. Операционные размеры, мм.
Rz h D e 2Zmin.p T 2Zном.р Dp. Dmax. Dmin. 2Zmax 2Zmin
Поверхность 7[Æ 60 h7 (-0.03)]
Штамповка 200 250 780

+1.2

-0.6

64.926 67.2 65.4 66 -0.6+1.2
5 Точение черновое 120 120 46.8 250 2538.16 -0.3 3.138 61.788 61.9 61.6 5.6 3.5 61.9-0.3
20 Точение получистовое 60 60 39 140 775.228 -0.12 1.075 60.713 60.8 60.68 1.22 0.8 60.8-0.12
30 Точение чистовое 20 20 31.2 60 373.122 -0.046 0.503 60.205 60.3 60.254 0.546 0.38 60.3-0.046
95 Шлифование 10 10 15.6 25 159.96 -0.03 0.205 60 60 59.97 0.33 0.254 60-0.03
Поверхность 3 [Æ 50 H8 (+0.06)]
Штамповка 200 250 780

+1.2

-0.6

- 44.614 44.2 42.4 - - 43-0.6+1.2
10 Растачивание черновое 120 120 132.6 140 2484.9 +0.46 3.084 47.698 47.96 47.5 5.56 3.3 47.5+0.46
25 Растачивание получистовое 80 80 110.5 60 771.08 +0.19 1.231 48.929 49.99 48.8 1.49 0.84 48.8+0.19
35 Растачивание чистовое 35 35 88.4 25 446.58 +0.12 0.638 49.567 49.62 49.5 0.82 0.51 49.5+0.12
90 Шлифование 5 5 44.2 25 323.73 +0.06 0.443 50 50.06    50 0.56 0.38 50+0.06

Таблица 6.2

Элементарная пов-ть детали. Технологический маршрут ее обработки Расчетный припуск, мм Допуск размера Т, мм Расчетный припуск 2Zном.р мм. Расчетный размер D, мм. Принятые размеры, мм. Принятые припуски, мм. Операционные размеры, мм.
2Zmin.p T 2Zном.р. Dp. Dmax. Dmin. 2Zmax 2Zmin
Поверхность 2 [Æ 70 h12 (-0.3)]
Штамповка -

+1.7

-0,9

- 75,55 77,7 75,1 - - 76+1.7-0,9
10 Точение черновое 2 -0.74 2,9 72,65 72,7 71,96 5.74 2.4 72,7-0.74
25 Точение получистовое 0,85 -0.46 1,59 71,06 71,1 70,64 2.06 0,86 71,1-0.46
35 Точение чистовое 0,6 -0.3 1,06 70 70 69,3 1.8 0.64 70-0.3
Поверхность 6 [Æ114h12 (-0.35)]
Штамповка -

+1,7

-0,9

- 119,66 121,7 119,1 - - 120-0,9+1,7
5 Точение черновое 2 -0,85 2,9 116,76 116,8 115,95 5.75 2.3 116,8-0,85
20 Точение получистовое 0,85 -0.46 1,7 115,06 115,1 114,64 2.16 1.85 115,1-0.46
30 Точение чистовое 0,6 -0.35 1.06 114 114 113,65 1.45 0.64 114-0.35
Поверхность 8 [Æ 45 H8 (+0.25)]
5  Сверление 0,55 +0,62 - 43,14 43,72 43,1 - - 43,1+0.62
40  Зенкерование 0,5 +0,39 1,12 44,26 44,59 44,3 1,499 0,58 44,3+0.39
95 Развертывание 0,35 +0,25 0,74 45 45,25 45 0,95 0,41 45+0.25

7. Расчет припусков и операционных размеров на обработку торцевых поверхностей

7.1 Определение припусков

Величину минимального припуска на обработку торцевой поверхности определяют по формуле:

,

где Rzi-1 и hi-1 – соответственно шероховатость и глубина дефектного слоя на предыдущей ступени обработки; Дi-1 – величина пространственных отклонений на предыдущей ступени обработки; еi – погрешность установки детали в данной ступени обработки.

Номинальный припуск:

,

где Ti-1 – допуск размера на предыдущей обработке.

Результаты расчета операционных припусков на обработку торцевых поверхностей нормативным и расчетно-аналитическим методом сведены в табл. 7.1.

Таблица 7.1

Номер торца

Маршрут

обработки

Эл-ты  припуска, мкм Расчетный припуск Zmin.р, мм
Rz h D e
1,9 Штамповка 200 250 1800 - -

Подрезка торца

черновая

80 80 108 200 0,71

Подрезка торца

чистовая

20 20 72 40 0.31
4,5,10 Штамповка -

Подрезка торца

Черновая

0,65

Подрезка торца

чистовая

0,2

7.2 Разработка и анализ размерной схемы обработки торцевых поверхностей детали

Расчёт линейных операционных размеров начинают с построения размерной схемы технологического процесса. Основой для построения схемы служит план технологического процесса.

Размерную схему необходимо строить, располагая эскизами плана обработки детали, следующим образом. Вычерчивают контур готовой детали, утолщёнными линиями указывают координаты торцов поверхностей в соответствии с координацией размеров на рабочем чертеже.

С учётом количества обрабатываемых торцевых поверхностей на эскизе детали условно показывают операционные припуски вплоть до соответствующего размера заготовки. Затем все исходные, промежуточные и окончательные торцевые поверхности нумеруются слева направо.

Через пронумерованные поверхности проводятся вертикальные линии. Между вертикальными линиями, начиная с последующей операции, с учётом эскизов обработки, указывают технологические размеры (обозначаем Sn). Размер представлен в виде стрелок с точкой, причём точка совмещена с установочной базой, а стрелка своим остриём упирается в ту поверхность, которую мы получили на данной операции, после снятия соответствующего межоперационного припуска.

После построения размерной схемы мы можем составить размерные цепи. В качестве замыкающих звеньев выступают конструкторские размеры или размеры припусков, в качестве составляющих, искомых звеньев, выступают операционные размеры, которые функционально связывают торцевые поверхности на всех операциях от заготовительной до окончательной.

Размерная схема представлена на рис. 7.1


Рис. 7.1. Размерная схема


7.3 Расчет технологических размерных цепей торцевых поверхностей детали

Выявление и расчет технологических размерных цепей начинают с двухзвенных цепей. А затем в такой последовательности, чтобы в каждой цепи имелось только одно неизвестное звено. Остальные звенья уже определены расчетом предыдущих размерных цепей. Для выполнения этого условия необходимо начинать выявление и расчет цепей в последовательности, обратной выполнению операций в технологическом процессе изготовления шестерни.

Любой замкнутый контур на размерной схеме, включающий в себя только один конструкторский размер или один припуск, образует технологическую размерную цепь.

Значения минимальных припусков Zi-jmin на формообразующие операции принимаем из расчета операционных размеров-координат нормативным методом и заносим в табл. 7.2. Определив Zi-jmin составляем исходные уравнения размерных цепей относительно Zi-jmin:

где Хr min – наименьший предельный размер увеличивающего звена размерной цепи;

 Хq max – наибольший предельный размер уменьшающего звена размерной цепи;

nr – число увеличивающих звеньев;

nq – число уменьшающих звеньев.

Обозначим определяемый операционный размер ХХ, тогда если искомый размер является уменьшающим звеном, получаем:


А если искомый размер является увеличивающим звеном, то:

Определив величины XX max, XX min на размеры ХХ, устанавливаем допуск на операционный размер дХ.

Полученные расчетные уравнения и значения операционных размеров заносим в таблицу 7.2. Далее по заранее составленным уравнениям рассчитываем номинальные размеры и предельные отклонения операционных припусков. Вычисленные значения вносим в табл. 7.2.


Замыкающий размер Исходное уравнение

Расчетный размер, мм

T, мм Принятый размер, мм Предельное значение припуска, мм

A2=60+0.3

A2=S10

60 +0.09

60+0.09

A4=65+0.3

A4=S9

65 +0.3

65+0.3

A1=150-0.3

A1=S8

115 -0.08

115-0.08

A3=22-0.21

A3=S8-S10-S7

A3min=S8min-S10max-S7max;

S7max=S8min-S10max-A3min=114,92-60-21,79=33,13

+0.04

33,+0.04

A3=115-0,08-600,009-330,04=22-0,21

Z2min=0.31

Z2min=S6-S8

Z2min=S6min-S8min;

S6min=Z2min+S8max=0,31+115=115,31

-0.35

115,7-0.35

Z2=115,7-0.35-115-0.08=0.7-0.35+0.08

Z4min =0.2

Z4=S10+Z2-S5

Z4min=S10min+Z2min-S5max;

S5max=S10min+Z2min-Z4min=59,91+0,31-0,2=60,02

+0.046

59,9+0.046

Z4=60+0.09+0.7-0.35+0.08-59,9+0.046=

=0,8-0,504+0.08

Z6min=0.2

Z6=S9+Z2-S4

Z6min=S9min+Z2min-S4max;

S4max=S9min+Z2min-Z6min=64,7+0,31-0,2=64,81

+0.3

64,5+0.3

Z6=65+0.3+0.7-0.35+0.08-64.5+0.3=

=1.2-0.95+0.08

Z9min=0.31

Z9=S8+Z2 - S3

Z9min=S8min+Z2min-S3max;

S3max=Z2min+S8min+Z9min=114.92+0.31-0.31=114.92

+0.3

114.7+0.3

Z9=114,92-0.08+0.70.08-0.35-114.7+0.3=

=0.92-0.43+0.08

Z1min=0.71

Z1=S1–S3

Z1min=S1min-S3max;

S1min=Z1min+S3max=0.71+114.92=115.63

-0.3

116,3-0.3

Z1=116,3-0.3–114.9+0.3=

=1.4-0.6

Z7min=0.2

Z7=S7+Z9-S2

Z7min=S7min+Z9min-S2max;

S2max=S7min+Z9min-Z7min=33.09+0.31-0.2=33.2

+0.21

32.9+0.21

Z7=33+0.04+0.92-0.43+0.08-

-32.9+0.21=1,02-0.64+0.12

Z5min=0.65

Z5=S4+Z1-H4

Z5min=S4min+Z1min-H4max;

H4max=S4min+Z1min-Z5min=64.81+0.71-0.65=64.87

+1.3

-0.7

63.3-0.7+1.3

Z5=64.5+0.3+1.4-0.6-

-63.3-0.7+1.3=2.6-1.9+1.0

Z3min=0.65

Z3=S5+Z1-H2

Z3min=S5min+Z1min-H2max;

H2max=S5min+Z1min-Z3min=60.02+0.71-0.65=60.08

+1.3

-0.7

58.8-0.7+1.3

Z3=59.9+0.046+1.4-0.6-58.8-0.7+1.3=

=2.6-1.9+0.746

Z10min=0.71

Z10=S1–H1

Z10min=S1min-H1max;

H1max=S1min-Z10min=115.93-0.71=115.22

+1.3

-0.7

114-0.7+1.3

Z10=116,3-0.3-114-0.7+1.3=

=2.3-1.6+0.7

Z8min=0.71

Z8=H3+S2+S5-S3-Z3

Z8min=H3min+S2min+S5min-S3max-Z3max

H3min=S3max+Z8min+Z3max-S2min-S5min=

=114.92+0.71+0.65-32.99-59.974=23.316

+1.3

-0.7

25-07+1.3

Z8=25-0.7+1.3+32,9+0.21+59.9+0.046-

-114.7+0.3+3.346-1.9+0.746=4.515-3.09+5.85


Метод выполнения заготовки для деталей машин определяется назначением и конструктивными особенностями детали, материалом, технологическими требованиями. Выбор заготовки определяет метод ее получения и припуски на ее изготовление. Припуск представляет собой слой металла, подлежащий в процессе обработки удалению, чем обеспечиваются необходимые размеры, класс точности и величины шероховатости поверхности. Установление оптимальных припусков является важнейшим технологическим показателем.

Для разработки чертежа поковки и операции штамповки используются следующие исходные данные:

1.  Материал детали: сталь 20Х;

2.  Точность изготовления поковки: поскольку производство серийное, то возникает необходимость удешевления стоимости изготовления, уменьшения времени на выполнение операции и увеличения стойкости инструмента, поэтому принимаем II класс точности заготовки;

3.  Группа стали – М1, поскольку поковка изготавливается из низколегированной стали с содержанием легирующих элементов менее 2% [12, с. 4].;

4.  Конфигурация поверхности разъема штампа – плоская ( П );

5.  Степень сложности – С2 [12, с. 5].

Степень сложности определяем по отношению объема поковки GП к объему геометрической фигуры, в которую вписывается поковка.

Заготовку получаем штамповкой на  ковочном молоте. Допуски на размеры и штамповочные уклоны приняты по ГОСТу 7505-55.


8. Оформление конечного варианта плана технологического процесса изготовления шестерни

Наиболее существенное влияние на последовательность обработки поверхностей детали оказывает характер размерной связи. Анализируя форму детали и проставленные на рабочем чертеже размеры, можно установить, что основными технологическими базами могут служить:

1.  Торцы детали – в качестве опорной базы, лишающей заготовку одной степени свободы.

2.  Наружные поверхности в качестве направляющих баз.

3.  Внутренние поверхности, лишающие заготовку четырех степеней свободы.

При обработке желательно свести к минимуму погрешность установки, чтобы обеспечить требования к точности и шероховатости поверхностей. Этого можно добиться, предварительно подготовив базы – торец и отверстие заготовки.

На чертеже детали в качестве конструкторской базы для диаметральных размеров принята ось детали, однако, исходя из невозможности использования оси в качестве технологической базы, в качестве установочных используем внешние и внутренние цилиндрические поверхности.

Анализируя чертеж детали, можно сказать, что для обеспечения наибольшей точности получаемых линейных размеров целесообразнее всего в качестве установочных баз использовать торцы 1, 7, поскольку с ними связано наибольшее количество размеров.

Первый этап технологического процесса – заготовительный – предполагает получение заготовки детали. Для данного способа (штамповка на кривошипном горячештамповочном прессе) точность получаемых размеров на уровне 16 квалитета, а шероховатость RZ = 160мкм.

На втором этапе проводим черновую обработку детали, которая включает в себя черновую обработку основных технологических баз, снятие корки, образовавшейся в процессе штамповки.

Следующим этапом технологического процесса является получистовая обработка поверхностей. На этом этапе выполняются формообразующие операции такие как: точение наружных и внутренних цилиндрических поверхностей вращения, сверление радиальных отверстий, точение фасок и галтелей, фрезерование пазов.

Материал детали – сталь 30ХМА. Для создания благоприятного распределения внутренних напряжений и формирования необходимой структуры материала, а также физико-механических свойств проводится химико-термическая обработка – нитроцементация с последующей закалкой и отпуском.

Чистовая обработка детали производится на шлифовальных операциях для придания поверхностям вращения шестерни заданной точности и шероховатости.

В конце технологического процесса проводятся операции окончательного контроля и консервации детали, предназначенные для контроля всех геометрических параметров детали и предохранения ее от внешних воздействий.


Заключение

В результате выполнения данного курсового проекта в соответствии с общими правилами разработки технологических процессов был решён комплекс задач размерного анализа: построена оптимальная размерная структура техпроцесса, определена рациональная последовательность операций, рассчитаны припуски, операционные размеры и допуски. Предшествовали этому такие важнейшие этапы, как выбор вида исходной заготовки, метода её изготовления, определение технологических баз, разработка вариантов технологического маршрута обработки. Это позволило обоснованно подходить к размерным расчётам с учётом всех особенностей конкретного технологического процесса

Перед разработкой технологического процесса изготовления детали – вала-шестерни был детально проанализирован чертеж детали на вопрос ее технологичности.

Разработка технологического процесса начина­лась с составления плана его этапов, в котором предварительно была наме­чена последовательность обработки различных поверхностей.

Последовательность операций обработки детали приняли согласно предварительно разработанному плану этапов технологического процесса.

При разработке переходов операций были учтены правила теории базирования в целях получения кондиционных размеров без ужесточения технологических допусков, точности приспособлений, что в конечном итоге удешевляет производство и повышает его экономические показатели.

Также были рассчитаны припуски на обработку и операционные размеры поверхностей вращения и плоских торцевых поверхностей вала нормативным и расчетно-аналитическим методом. После сравнения результатов были найдены оптимальные варианты значений припусков.

По результатам расчета припусков на диаметральные поверхности и торцевые поверхности был спроектирован чертеж заготовки.


Список используемой литературы

1.  Сорокин В.Г. и др. Марочник сталей и сплавов. – М.: Машиностроение, 1989. – 640 с.

2.  Справочник технолога-машиностроителя. В 2-х т. Т. 1. / Под ред. А.Г. Косиловой и Р.К. Мещерякова.– 4-е изд., перераб. и доп. – М.: Машиностроение, 1985. 656 с., ил.

3.  Справочник технолога-машиностроителя. В 2-х т. Т. 2. / Под ред. А.Г. Косиловой и Р. К. Мещерякова.– 4-е изд., перераб. и доп. – М.: Машиностроение, 1985. 496 с., ил.

4.  Методы обработки поверхностей. Методические рекомендации по выполнению лабораторных работ. А. Ф. Горбачев, А.М. Мунгиев, С.В. Худяков, С.В. Яценко. Харьков, ХАИ – 46 с.

5.  Якушев А.И., Воронцов Л. Н., Федотов Н.М. Взаимозаменяемость, стандартизация и технические измерения. М.: “Машиностроение”, 1987г.

6.  Проектирование поковок, оснастки и технологических процессов горячей объемной штамповки/ В. К. Борисевич, Ю.И. Чебанов. – Учеб. пособие по курсовой работе «Обработка металлов давлением». – Харьков, Харьк. авиац. ин-т, 1992. – 66 с.

7.  Брюханов А.Н. Ковка и объемная штамповка. Учебное пособие для машиностроительных вузов. Изд. 2-е, перераб. и доп. М., «Машиностроение», 1975. 408 с. с ил.


Страницы: 1, 2


© 2010 СБОРНИК РЕФЕРАТОВ