Сборник рефератов

Курсовая работа: Разработка плана изготовления и расчет операционных размеров деталей газотурбинной установки

Курсовая работа: Разработка плана изготовления и расчет операционных размеров деталей газотурбинной установки

Мiнiстерство освiти та науки України

Нацiональний аерокосмiчний унiверситет iм. М.Є. Жуковського ”ХАІ”

Кафедра 204

Пояснювальна записка до курсового проекту

з дисципліни «Технологія газотурбобудування»

на тему: «Розробка плану виготовлення і розрахунок операційних розмірів деталі ГТУ»


Содержание

Введение

1. Анализ рабочего чертежа детали

1.1 Назначение детали, условия работы

1.2 Обоснование выбора материала: химический состав, физико-механические характеристики, технологические свойства

2. Определение показателей технологичности детали

2.1 Качественная оценка технологичности

2.2 Количественная оценка технологичности

3. Выбор метода получения заготовки

3.1 Обоснование выбранного метода получения заготовки

3.2 Определение массы и степени сложности заготовки

4. Определение количества ступеней обработки основных поверхностей детали

5. Разработка предварительного плана обработки детали

6. Расчет припусков и операционных размеров на диаметральные поверхности

7. Расчет припусков и операционных размеров на обработку торцевых поверхностей

7.1 Определение припусков

7.2 Разработка и анализ размерной схемы обработки торцевых поверхностей детали

7.3 Расчет технологических размерных цепей торцевых поверхностей детали

8. Проектирование заготовительной операции и разработка

чертежа заготовки

9. Оформление конечного варианта плана технологического процесса изготовления вала

Заключение

Список использованной литературы


Введение

Прогресс авиадвигателестроения в значительной мере определяет развитие современной авиации. Совершенствование авиационных деталей, в свою очередь, выдвигает новые требования к технологии их изготовления. Рост рабочих температур и давлений требует все более широкого использования высокопрочных и жаропрочных сплавов, тенденция сокращения числа деталей приводит к усложнению их геометрических форм, а снижение удельной массы двигателя обуславливает применение деталей малой жесткости.

Успешная реализация конструктивных решений в большей степени определяется технологией. Проектируемые технологические процессы должны обеспечивать повышение производительности труда и качества изделий при одновременном снижении затрат на их изготовление. Решение этих задач во многом зависит от рационального построения размерных связей в процессе обработки, обоснованного назначения припусков на обработку допусков операционных размеров.

Всякое необоснованное установление допусков на размеры деталей приводит к удорожанию производства. Излишнее ужесточение допусков вызывает потребность в точном оборудовании и оснастке, более точных (а значит, и более дорогих) заготовках. Чрезмерное расширение поля допуска затрудняет обработку на предварительно настроенных станках и увеличивает объем пригоночных работ в процессе сборки изделия.

Эффективность технологического процесса существенно зависит также от рационального выбора припусков. Чрезмерные припуски влекут за собой перерасход материала и требуют введения дополнительных технологических переходов, увеличивая расход режущего инструмента и электроэнергии, трудоемкость обработки и в конечном итоге – себестоимость продукции. Ввиду высокой стоимости авиационных материалов уменьшение припусков обычно окупает затраты на изготовление точных заготовок, однако необоснованно заниженные припуски не обеспечивают удаления дефектной части поверхностного слоя и достижения заданной точности, увеличивая вероятность брака.

Даже при сравнительно малых масштабах производства для получения заготовок деталей применяют такую обработку давлением, как горячая штамповка, прессование, волочение, чеканка и т.п. При этом обязательны определенное расположение волокон и надлежащая уковка материала. Свободная ковка в авиадвигателестроении применяется уже редко. Высокие требования к качеству материала заставляют применять особые виды контроля, основанные на применении изотопов и ультразвука.

Для изготовления многих деталей становится обычным применение различных методов точного литья. Почти все основные детали двигателей подвергаются термической или термохимической обработке. Это обстоятельство приводит к усложнению технологического процесса и удлинению цикла обработки. Выбор места термообработки в плане технологического связан обычно с целым рядом особых соображений, касающихся как качества детали, так и возможностей проведения механической обработки.

Производство авиационных двигателей отличается особой тщательностью контроля. Все ответственные детали и узлы, как правило, подвергают стопроцентному всестороннему контролю, который заключается в проверке качества материала, правильности формы, размеров, взаимного расположения поверхностей, качества поверхностей, весовой сбалансированности, а также качества соединения деталей, особенно неразъемных. Уделяя большое внимание качеству изделий, в то же время заботятся об экономике производства, добиваясь высокой производительности и низкой себестоимости изготовления авиационных двигателей. Эта задача решается путем совершенствования технологических процессов и использования наиболее рациональных форм организации производства.


1. Анализ чертежа детали

1.1 Описание конструкции детали, ее назначение и условия работы

Деталь представляет собой шестерню. Деталь образована цилиндрическими поверхностями и плоскостями.

Деталь работает в тяжелых условиях, под действием значительных изгибных напряжений, постоянно сопротивляется скручиванию, поэтому материал детали должен быть достаточно прочным, иметь пластическую, вязкую сердцевину и поверхностную твердость.

Между рабочим чертежом детали, условиями ее эксплуатации и технологическим процессом ее изготовления существуют тесные связи.

1.  Материал, общие размеры и конфигурация детали дают возможность установить способ получения заготовки детали, оценить примерный объем и трудоемкость обработки, наметить типы потребного оборудования. Присутствие сложных поверхностей предопределяет  необходимость использования специального оборудования.

2.  Требуемая точность поверхностей в чертеже определяет необходимые методы обработки.

3.  Взаимная координация поверхностей в чертеже определяет базы, способы установки, последовательность операций технологического процесса.

4.  Заданная в чертеже термическая и химико-термическая обработка дает преставление о месте этой обработки в технологическом процессе и о разделении процесса на этапы.

Условия работы детали: диапазон рабочих температур и давлений, условия нагружения и виды нагрузок, установленный ресурс, наличие электрических и магнитных полей, использование рабочих жидкостей и смазочных материалов, контактирование с химически активными веществами – все эти факторы определяют физико-механические свойства материала детали, которые необходимо обеспечить в процессе ее изготовления.

1.2 Обоснование выбора материала: химический состав, физико-механические характеристики, технологические свойства

Материал шестерни должен обладать высокой прочностью и иметь высокую поверхностную твердость, так как деталь работает в тяжелых условиях, поэтому в данном случае целесообразно применение конструкционных сталей, например сталь 30ХМА.

Вид поставки – штамповка.

Назначение – улучшаемые и цементируемые детали, от которых требуется высокая прочность и вязкость сердцевины, а также высокая поверхностная твердость, работающая при больших скоростях и повышенных удельных давлениях под действием ударных нагрузок.

Таблица 1.1

С Cr Mn Si P S Ni Cu
не более
0.26-0.33 0.8-1.10 0.40-0.70 0.17-0.37 0.025 0.025 0.30 0.30

Таблица 1.2

Механические свойства
Сечение, мм

s0.2, мПа

sВ, мПа

д5, %

ш, %

KCU, Дж/м2

HB

HRCэ

Штамповка. Нитроцементация HRC55…60
Образцы 735 930 12 55 59

Таблица 1.3

Технологические свойства:

Температура ковки

Начала 1220, конца 800. Сечения до 200 мм охлаждаются в зольниках, более 200 мм - в печах.

Свариваемость

ограниченно свариваемая. Способы сварки: РДС, КТС. Рекомендуется подогрев и последующая термообработка.

Обрабатываемость резанием

После нормализации при НВ 364 и B = 860 МПа K тв.спл. = 0.45, K б.ст. = 0.25.

Склонность к отпускной способности

 Не склонна

Флокеночувствительность

малочувствительна

2. Определение показателей технологичности детали

2.1 Качественная оценка технологичности

Данная деталь представляет собой тело вращения цилиндрической формы переменного диаметра. Вдоль оси вращения детали выполнено сквозное отверстие так же переменного диаметра. Наличие ряда нетехнологических поверхностей, обуславливает применение специального режущего инструмента и оборудования. К таким поверхностям относятся, в данном случае, зубчатая и шлицевая поверхности. Деталь имеет внутреннею зубчатую и внешнюю шлицевую поверхности. Для их получения необходимо применять специальные методы обработки, такие как зубо- и шлицедолбление.

Что же касается технологичности геометрической формы, то шестерни в этом смысле нетехнологичны, поскольку операции нарезания зубьев выполняется в основном малопроизводительными методами.

Требования точности формы и расположения поверхностей детали обусловлены необходимостью обеспечить надежную работу зубчатого зацепления

2.2 Количественная оценка технологичности

Средний квалитет точности . Коэффициент точности обработки

Так как , то деталь по точности является технологичной .

Средняя шероховатость детали

Коэффициент шероховатости

Так как , то деталь технологична  по шероховатости.

Рис.1 Схема нумерации  основных поверхностей детали

Деталь имеет 10 основных поверхностей.


3. Выбор метода получения заготовки

3.1 Обоснование выбранного метода получения заготовки

Выбор метода получения заготовки является многовариантной задачей. С точки зрения сокращения затрат времени и средств на механическую обработку целесообразно выбирать заготовки, которые по форме, размерам, точности и качеству поверхности возможно полнее соответствовали бы параметрам готовой детали. Но при этом будут увеличиваться текущие и единовременные затраты на получение заготовки в заготовительном цехе. С другой стороны, упрощением формы заготовки, снижением требований к ее точности и качеству можно значительно уменьшить затраты на ее изготовление. Но в этом случае снизится коэффициент использования материала и увеличатся затраты на обработку такой заготовки в механическом цехе.

Основными факторами, определяющими вид заготовки, являются материал детали, ее конфигурация, габаритные размеры и, что немаловажно, условия ее работы.

Исходя из осесимметричной формы детали, а также необходимости получения для дальнейшей ее обработки благоприятного распределения внутренних напряжений, заготовку получаем штамповкой на кривошипном горячештамповочном прессе.

Это связано со следующими преимуществами данного метода:

- повышенная точность размеров получаемых на КГШП поковок из-за постоянства хода пресса и определенности нижнего положения ползуна, что позволяет уменьшить отклонения размеров поковок по высоте, поковки также не контролируют на сдвиг. Жесткое и надежное направление ползуна КГШП и применение штампов с направляющими колонками и втулками ограничивает относительные сдвиги верхней и нижней частей поковки до десятых долей миллиметра, что повышает точность горизонтальных размеров поковки.

- увеличение коэффициента использования материала вследствие более совершенной конструкции штампов, снабженных верхним и нижним выталкивателями, что позволяет уменьшить штамповочные уклоны, припуски и напуски и тем самым приводит к экономии металла и уменьшению последующей обработки поковок резанием. Колебания вертикальных размеров поковок при штамповке на прессах объясняется различной величиной упругих деформаций штампа и пресса в связи с колебаниями температуры и объема заготовки, но тоже не составляет значимой величины. Уменьшение штамповочных уклонов (внутренние штамповочные уклоны 3˚; наружные штамповочные уклоны 2˚) позволяет получить более совершенную форму заготовки, а значит уменьшить припуски на механическую обработку и повысить коэффициент использования материала.

- более высокая производительность данного метода по сравнению с молотами, что важно в условиях серийного производства;

- снижение себестоимости продукции за счет снижения расхода металла и эксплуатационной стоимости.

Для того, чтоб деталь была технологичной, необходимо выполнить такие требования:

1) использовать высокопроизводительные технологические методы обработки;

2) обработку поверхностей по возможности необходимо осуществлять без специального инструмента и оборудования;

3) Деталь должна иметь поверхности, удобные для установки;

4) заданные точность и шероховатость поверхностей должны быть обоснованы и соблюдено требование соответствия между шероховатостью и точностью.


3.2 Определение массы и степени сложности заготовки

Масса заготовки определяется по формуле

,

где mд – масса детали.

.

Плотность стали 30ХМА с= 7850 кг/м3, а объем детали определяем в программе Компас.

Степень сложности поковки определяется по формуле:

степень сложности поковки относится к С4.

Таблица 3.1

Допуски основных поверхностей заготовки

поверхности

Размер детали, мм Допуск на размер, мкм Точность Допуск заготовки Точность Rz
1-9 115 350 h12

+1.7

-0.9

IT16 200
1-10 65 300 h12

+1,7

-0.9

IT16 200
1-4 60 300 h12

+1.7

-0.9

IT16 200
4-5 22 210 h12

+1.6

-0.8

IT17 200
2 Ç70 300 h12

+1.7

-0.9

IT16 200
3 Ç50 50 h12

+1.7

-0.9

IT16 200
6 Ç114 350 H12

+1.7

-0.9

IT16 200
7 Ç45 300 H7

+1.2

-0.6

IT16 200
8 Ç80 250 H12

+1.7

-0.9

IT16 200

4. Определение количества ступеней обработки основных поверхностей детали

При определении необходимого и достаточного количества ступеней обработки отдельных поверхностей для обеспечения заданных характеристик точности формообразующих размеров, формы и качества поверхности с достаточной для практических целей точностью, воспользуемся зависимостями:

1)  число ступеней обработки необходимое для обеспечения заданной точности:

,

где Тзаг – допуск размера заготовки; Тдет – допуск размера детали.

2)  число ступеней обработки необходимое для обеспечения заданной шероховатости:

3) 

,

где Rzзаг – шероховатость поверхности заготовки;

Rzдет – шероховатость поверхности готовой детали.

Результаты расчета необходимого числа ступеней обработки для поверхностей детали приведены в табл. 4.1.


Nп/п

Размер,

мм.

Точность

(кв./допуск, мкм)

Шероховатость

, мкм

Число ступеней

обработки

Точность по ступеням

обработки (квалитет)

Шероховатость по ступеням обработки, мкм

Методы

обработки

Д З Д З Д З

1 2 3 4 1 2 3 4
2 Æ70

10 200 2 3.3 3

80 20 10

1.Точение черновое

2.Точение получистовое

3.Точение чистовое

3 Æ50

5 200 3.8 4.1 4

120 80 35 5

1.Точение черновое

2.Точение получистовое

3. Точение чистовое

4.Шлифование

6 Æ114

12,8 200 1,8 2,9 3

50 25 12,5

1.Точение черновое

2.Точение получистовое

3.Точение чистовое

7 Æ60

10 200 4,2 3.3 4

120 60 20 10

1.Точение черновое

2.Точение получистовое

3.Точение чистовое

4.Шлифование

8 Æ45

20 200 2,1 2,5 3

80 40 20

1.Сверление

2.Зенкерование

3.Развертывание

1-9 115

20 200 1.9 2.5 2

80 20

1.Точение черновое

2.Точение чистовое

4-5 22

20 200 1.8 2.3 2

80 20

1.Точение черновое

2.Точение чистовое

1-10 65

20 200 1.7 2.3 2

80 20

1.Точение черновое

2.Точение чистовое

1-4 60

20 200 1.7 2.3 2

80 20

1.Точение черновое

2.Точение чистовое

Страницы: 1, 2


© 2010 СБОРНИК РЕФЕРАТОВ