Died: 8 Jan 1642 in Arcetri (near Florence) (now in
Italy)
Galileo Galilei's parents were Vincenzo Galilei and
Guilia Ammannati. Vincenzo, who was born in Florence in 1520, was a teacher of
music and a fine lute player. After studying music in Venice he carried out
experiments on strings to support his musical theories. Guilia, who was born in
Pescia, married Vincenzo in 1563 and they made their home in the countryside
near Pisa. Galileo was their first child and spent his early years with his
family in Pisa.
In 1572, when Galileo was eight years old, his family
returned to Florence, his father's home town. However, Galileo remained in Pisa
and lived for two years with Muzio Tedaldi who was related to Galileo's mother
by marriage. When he reached the age of ten, Galileo left Pisa to join his
family in Florence and there he was tutored by Jacopo Borghini. Once he was old
enough to be educated in a monastery, his parents sent him to the Camaldolese
Monastery at Vallombrosa which is situated on a magnificent forested hillside
33 km southeast of Florence. The Camaldolese Order was independent of the
Benedictine Order, splitting from it in about 1012. The Order combined the
solitary life of the hermit with the strict life of the monk and soon the young
Galileo found this life an attractive one. He became a novice, intending to
join the Order, but this did not please his father who had already decided that
his eldest son should become a medical doctor.
Vincenzo had Galileo return from Vallombrosa to
Florence and give up the idea of joining the Camaldolese order. He did continue
his schooling in Florence, however, in a school run by the Camaldolese monks.
In 1581 Vincenzo sent Galileo back to Pisa to live again with Muzio Tedaldi and
now to enrol for a medical degree at the University of Pisa. Although the idea
of a medical career never seems to have appealed to Galileo, his father's wish
was a fairly natural one since there had been a distinguished physician in his
family in the previous century. Galileo never seems to have taken medical
studies seriously, attending courses on his real interests which were in
mathematics and natural philosophy. His mathematics teacher at Pisa was Filippo
Fantoni, who held the chair of mathematics. Galileo returned to Florence for
the summer vacations and there continued to study mathematics.
In the year 1582-83 Ostilio Ricci, who was the
mathematician of the Tuscan Court and a former pupil of Tartaglia, taught a course on Euclid's Elements at the University of Pisa
which Galileo attended. During the summer of 1583 Galileo was back in Florence
with his family and Vincenzo encouraged him to read Galen to further his
medical studies. However Galileo, still reluctant to study medicine, invited
Ricci (also in Florence where the Tuscan court spent the summer and autumn) to
his home to meet his father. Ricci tried to persuade Vincenzo to allow his son
to study mathematics since this was where his interests lay. Certainly Vincenzo
did not like the idea and resisted strongly but eventually he gave way a little
and Galileo was able to study the works of
Euclid and Archimedes from the
Italian translations which Tartaglia
had made. Of course he was still officially enrolled as a medical student at
Pisa but eventually, by 1585, he gave up this course and left without
completing his degree.
Galileo began teaching mathematics, first privately in
Florence and then during 1585-86 at Sienna where he held a public appointment.
During the summer of 1586 he taught at Vallombrosa, and in this year he wrote
his first scientific book The little balance [La Balancitta] which
described Archimedes' method of finding
the specific gravities (that is the relative densities) of substances using a
balance. In the following year he travelled to Rome to visit Clavius who was professor of mathematics at
the Jesuit Collegio Romano there. A topic which was very popular with the
Jesuit mathematicians at this time was centres of gravity and Galileo brought
with him some results which he had discovered on this topic. Despite making a
very favourable impression on Clavius,
Galileo failed to gain an appointment to teach mathematics at the University of
Bologna.
After leaving Rome Galileo remained in contact
with Clavius by correspondence and
Guidobaldo del Monte was also a regular
correspondent. Certainly the theorems which Galileo had proved on the centres
of gravity of solids, and left in Rome, were discussed in this correspondence.
It is also likely that Galileo received lecture notes from courses which had
been given at the Collegio Romano, for he made copies of such material which
still survive today. The correspondence began around 1588 and continued for
many years. Also in 1588 Galileo received a prestigious invitation to lecture
on the dimensions and location of hell in Dante's Inferno at the Academy in
Florence.
Fantoni left the chair of mathematics at the
University of Pisa in 1589 and Galileo was appointed to fill the post (although
this was only a nominal position to provide financial support for Galileo). Not
only did he receive strong recommendations from Clavius, but he also had acquired an excellent reputation through
his lectures at the Florence Academy in the previous year. The young
mathematician had rapidly acquired the reputation that was necessary to gain
such a position, but there were still higher positions at which he might aim.
Galileo spent three years holding this post at the university of Pisa and
during this time he wrote De Motu a series of essays on the theory of motion
which he never published. It is likely that he never published this material because
he was less than satisfied with it, and this is fair for despite containing
some important steps forward, it also contained some incorrect ideas. Perhaps
the most important new ideas which De Motu contains is that one can test
theories by conducting experiments. In particular the work contains his
important idea that one could test theories about falling bodies using an
inclined plane to slow down the rate of descent.
In 1591 Vincenzo Galilei, Galileo's father, died and
since Galileo was the eldest son he had to provide financial support for the
rest of the family and in particular have the necessary financial means to
provide dowries for his two younger sisters. Being professor of mathematics at
Pisa was not well paid, so Galileo looked for a more lucrative post. With
strong recommendations from Guidobaldo
del Monte, Galileo was appointed professor of mathematics at the University of
Padua (the university of the Republic of Venice) in 1592 at a salary of three times
what he had received at Pisa. On 7 December 1592 he gave his inaugural lecture
and began a period of eighteen years at the university, years which he later
described as the happiest of his life. At Padua his duties were mainly to
teach Euclid's geometry and standard
(geocentric) astronomy to medical students, who would need to know some
astronomy in order to make use of astrology in their medical practice. However,
Galileo argued against Aristotle's view
of astronomy and natural philosophy in three public lectures he gave in
connection with the appearance of a New Star (now known as ' Kepler's
supernova') in 1604. The belief at this time was that of Aristotle, namely that all changes in the
heavens had to occur in the lunar region close to the Earth, the realm of the
fixed stars being permanent. Galileo used parallax arguments to prove that the
New Star could not be close to the Earth. In a personal letter written to Kepler in 1598, Galileo had stated that he
was a Copernican (believer in the theories of
Copernicus). However, no public sign of this belief was to appear until
many years later.
At Padua, Galileo began a long term relationship with
Maria Gamba, who was from Venice, but they did not marry perhaps because
Galileo felt his financial situation was not good enough. In 1600 their first
child Virginia was born, followed by a second daughter Livia in the following
year. In 1606 their son Vincenzo was born.
We mentioned above an error in Galileo's theory of
motion as he set it out in De Motu around 1590. He was quite mistaken in his belief
that the force acting on a body was the relative difference between its
specific gravity and that of the substance through which it moved. Galileo
wrote to his friend Paolo Sarpi, a fine mathematician who was consultor to the
Venetian government, in 1604 and it is clear from his letter that by this time
he had realised his mistake. In fact he had returned to work on the theory of
motion in 1602 and over the following two years, through his study of inclined
planes and the pendulum, he had formulated the correct law of falling bodies
and had worked out that a projectile follows a parabolic path. However, these
famous results would not be published for another 35 years.
In May 1609, Galileo received a letter from Paolo
Sarpi telling him about a spyglass that a Dutchman had shown in Venice. Galileo
wrote in the Starry Messenger (Sidereus Nuncius) in April 1610:-
About ten months ago a report reached my ears that a
certain Fleming had constructed a spyglass by means of which visible objects,
though very distant from the eye of the observer, were distinctly seen as if
nearby. Of this truly remarkable effect several experiences were related, to
which some persons believed while other denied them. A few days later the
report was confirmed by a letter I received from a Frenchman in Paris, Jacques
Badovere, which caused me to apply myself wholeheartedly to investigate means
by which I might arrive at the invention of a similar instrument. This I did
soon afterwards, my basis being the doctrine of refraction.
From these reports, and using his own technical skills
as a mathematician and as a craftsman, Galileo began to make a series of
telescopes whose optical performance was much better than that of the Dutch
instrument. His first telescope was made from available lenses and gave a
magnification of about four times. To improve on this Galileo learned how to
grind and polish his own lenses and by August 1609 he had an instrument with a
magnification of around eight or nine. Galileo immediately saw the commercial and
military applications of his telescope (which he called a perspicillum) for
ships at sea. He kept Sarpi informed of his progress and Sarpi arranged a
demonstration for the Venetian Senate. They were very impressed and, in return
for a large increase in his salary, Galileo gave the sole rights for the
manufacture of telescopes to the Venetian Senate. It seems a particularly good
move on his part since he must have known that such rights were meaningless,
particularly since he always acknowledged that the telescope was not his
invention!
By the end of 1609 Galileo had turned his telescope on
the night sky and began to make remarkable discoveries. Swerdlow writes (see
[16]):-
In about two months, December and January, he made
more discoveries that changed the world than anyone has ever made before or
since.
The astronomical discoveries he made with his
telescopes were described in a short book called the Starry Messenger published
in Venice in May 1610. This work caused a sensation. Galileo claimed to have seen
mountains on the Moon, to have proved the
Milky Way was made up of tiny stars, and to have seen four small bodies
orbiting Jupiter. These last, with an eye to getting a position in Florence, he
quickly named 'the Medicean stars'. He had also sent Cosimo de Medici, the
Grand Duke of Tuscany, an excellent telescope for himself.
The Venetian Senate, perhaps realising that the rights
to manufacture telescopes that Galileo had given them were worthless, froze his
salary. However he had succeeded in impressing Cosimo and, in June 1610, only a
month after his famous little book was published, Galileo resigned his post at
Padua and became Chief Mathematician at the University of Pisa (without any
teaching duties) and 'Mathematician and Philosopher' to the Grand Duke of
Tuscany. In 1611 he visited Rome where he was treated as a leading celebrity;
the Collegio Romano put on a grand dinner with speeches to honour Galileo's
remarkable discoveries. He was also made a member of the Accademia dei Lincei
(in fact the sixth member) and this was an honour which was especially
important to Galileo who signed himself 'Galileo Galilei Linceo' from this time
on.
While in Rome, and after his return to Florence,
Galileo continued to make observations with his telescope. Already in the
Starry Messenger he had given rough periods of the four moons of Jupiter, but
more precise calculations were certainly not easy since it was difficult to
identify from an observation which moon was I, which was II, which III, and
which IV. He made a long series of observations and was able to give accurate
periods by 1612. At one stage in the calculations he became very puzzled since
the data he had recorded seemed inconsistent, but he had forgotten to take into
account the motion of the Earth round the sun.
Galileo first turned his telescope on Saturn on 25
July 1610 and it appeared as three bodies (his telescope was not good enough to
show the rings but made them appear as lobes on either side of the planet).
Continued observations were puzzling indeed to Galileo as the bodies on either
side of Saturn vanished when the ring system was edge on. Also in 1610 he
discovered that, when seen in the telescope, the planet Venus showed phases
like those of the Moon, and therefore must orbit the Sun not the Earth. This
did not enable one to decide between the Copernican system, in which everything
goes round the Sun, and that proposed by Tycho
Brahe in which everything but the Earth (and Moon) goes round the Sun
which in turn goes round the Earth. Most astronomers of the time in fact
favoured Brahe's system and indeed
distinguishing between the two by experiment was beyond the instruments of the
day. However, Galileo knew that all his discoveries were evidence for Copernicanism,
although not a proof. In fact it was his theory of falling bodies which was the
most significant in this respect, for opponents of a moving Earth argued that
if the Earth rotated and a body was dropped from a tower it should fall behind
the tower as the Earth rotated while it fell. Since this was not observed in
practice this was taken as strong evidence that the Earth was stationary.
However Galileo already knew that a body would fall in the observed manner on a
rotating Earth.
Other observations made by Galileo included the observation
of sunspots. He reported these in Discourse on floating bodies which he
published in 1612 and more fully in Letters on the sunspots which appeared in
1613. In the following year his two daughters entered the Franciscan Convent of
St Matthew outside Florence, Virginia taking the name Sister Maria Celeste and
Livia the name Sister Arcangela. Since they had been born outside of marriage,
Galileo believed that they themselves should never marry. Although Galileo put
forward many revolutionary correct theories, he was not correct in all cases.
In particular when three comets appeared in 1618 he became involved in a
controversy regarding the nature of comets. He argued that they were close to
the Earth and caused by optical refraction. A serious consequence of this
unfortunate argument was that the Jesuits began to see Galileo as a dangerous
opponent.
Despite his private support for Copernicanism, Galileo
tried to avoid controversy by not making public statements on the issue.
However he was drawn into the controversy through Castelli who had been
appointed to the chair of mathematics in Pisa in 1613. Castelli had been a
student of Galileo's and he was also a supporter of Copernicus. At a meeting in the Medici palace in Florence in
December 1613 with the Grand Duke Cosimo II and his mother the Grand Duchess
Christina of Lorraine, Castelli was asked to explain the apparent
contradictions between the Copernican theory and Holy Scripture. Castelli
defended the Copernican position vigorously and wrote to Galileo afterwards
telling him how successful he had been in putting the arguments. Galileo, less
convinced that Castelli had won the argument, wrote Letter to Castelli to him
arguing that the Bible had to be interpreted in the light of what science had
shown to be true. Galileo had several opponents in Florence and they made sure
that a copy of the Letter to Castelli was sent to the Inquisition in Rome.
However, after examining its contents they found little to which they could
object.
The Catholic Church's most important figure at this
time in dealing with interpretations of the Holy Scripture was Cardinal Robert
Bellarmine. He seems at this time to have seen little reason for the Church to
be concerned regarding the Copernican theory. The point at issue was whether Copernicus had simply put forward a
mathematical theory which enabled the calculation of the positions of the
heavenly bodies to be made more simply or whether he was proposing a physical
reality. At this time Bellarmine viewed the theory as an elegant mathematical
one which did not threaten the established Christian belief regarding the
structure of the universe.
In 1616 Galileo wrote the Letter to the Grand Duchess
which vigorously attacked the followers of
Aristotle. In this work, which he addressed to the Grand Duchess
Christina of Lorraine, he argued strongly for a non-literal interpretation of
Holy Scripture when the literal interpretation would contradict facts about the
physical world proved by mathematical science. In this Galileo stated quite
clearly that for him the Copernican theory is not just a mathematical
calculating tool, but is a physical reality:-
I hold that the Sun is located at the centre of the
revolutions of the heavenly orbs and does not change place, and that the Earth
rotates on itself and moves around it. Moreover ... I confirm this view not
only by refuting Ptolemy's and Aristotle's arguments, but also by producing
many for the other side, especially some pertaining to physical effects whose
causes perhaps cannot be determined in any other way, and other astronomical
discoveries; these discoveries clearly confute the Ptolemaic system, and they
agree admirably with this other position and confirm it.
Pope Paul V ordered Bellarmine to have the Sacred
Congregation of the Index decide on the Copernican theory. The cardinals of the
Inquisition met on 24 February 1616 and took evidence from theological experts.
They condemned the teachings of
Copernicus, and Bellarmine conveyed their decision to Galileo who had
not been personally involved in the trial. Galileo was forbidden to hold
Copernican views but later events made him less concerned about this decision
of the Inquisition. Most importantly Maffeo Barberini, who was an admirer of
Galileo, was elected as Pope Urban VIII. This happened just as Galileo's book
Il saggiatore (The Assayer) was about to be published by the Accademia dei
Lincei in 1623 and Galileo was quick to dedicate this work to the new Pope. The
work described Galileo's new scientific method and contains a famous quote
regarding mathematics:-
Philosophy is written in this grand book, the
universe, which stands continually open to our gaze. But the book cannot be
understood unless one first learns to comprehend the language and read the
characters in which it is written. It is written in the language of
mathematics, and its characters are triangles, circles, and other geometric
figures without which it is humanly impossible to understand a single word of
it; without these one is wandering in a dark labyrinth.
Pope Urban VIII invited Galileo to papal audiences on
six occasions and led Galileo to believe that the Catholic Church would not
make an issue of the Copernican theory. Galileo, therefore, decided to publish
his views believing that he could do so without serious consequences from the
Church. However by this stage in his life Galileo's health was poor with
frequent bouts of severe illness and so even though he began to write his
famous Dialogue in 1624 it took him six years to complete the work.
Galileo attempted to obtain permission from Rome to
publish the Dialogue in 1630 but this did not prove easy. Eventually he
received permission from Florence, and not Rome. In February 1632 Galileo
published Dialogue Concerning the Two Chief Systems of the World - Ptolemaic
and Copernican. It takes the form of a dialogue between Salviati, who argues
for the Copernican system, and Simplicio who is an Aristotelian philosopher.
The climax of the book is an argument by Salviati that the Earth moves which
was based on Galileo's theory of the tides. Galileo's theory of the tides was
entirely false despite being postulated after
Kepler had already put forward the correct explanation. It was
unfortunate, given the remarkable truths the Dialogue supported, that the
argument which Galileo thought to give the strongest proof of Copernicus's theory should be incorrect.
Shortly after publication of Dialogue Concerning the
Two Chief Systems of the World - Ptolemaic and Copernican the Inquisition
banned its sale and ordered Galileo to appear in Rome before them. Illness
prevented him from travelling to Rome until 1633. Galileo's accusation at the
trial which followed was that he had breached the conditions laid down by the
Inquisition in 1616. However a different version of this decision was produced
at the trial rather than the one Galileo had been given at the time. The truth
of the Copernican theory was not an issue therefore; it was taken as a fact at
the trial that this theory was false. This was logical, of course, since the judgement
of 1616 had declared it totally false.
Found guilty, Galileo was condemned to lifelong
imprisonment, but the sentence was carried out somewhat sympathetically and it
amounted to house arrest rather than a prison sentence. He was able to live first
with the Archbishop of Siena, then later to return to his home in Arcetri, near
Florence, but had to spend the rest of his life watched over by officers from
the Inquisition. In 1634 he suffered a severe blow when his daughter Virginia,
Sister Maria Celeste, died. She had been a great support to her father through
his illnesses and Galileo was shattered and could not work for many months.
When he did manage to restart work, he began to write Discourses and
mathematical demonstrations concerning the two new sciences.
After Galileo had completed work on the Discourses it
was smuggled out of Italy, and taken to Leyden in Holland where it was
published. It was his most rigorous mathematical work which treated problems on
impetus, moments, and centres of gravity. Much of this work went back to the
unpublished ideas in De Motu from around 1590 and the improvements which he had
worked out during 1602-1604. In the Discourses he developed his ideas of the
inclined plane writing:-
I assume that the speed acquired by the same movable
object over different inclinations of the plane are equal whenever the heights
of those planes are equal.
He then described an experiment using a pendulum to
verify his property of inclined planes and used these ideas to give a theorem
on acceleration of bodies in free fall:-
The time in which a certain distance is traversed by
an object moving under uniform acceleration from rest is equal to the time in
which the same distance would be traversed by the same movable object moving at
a uniform speed of one half the maximum and final speed of the previous
uniformly accelerated motion.
After giving further results of this type he gives his
famous result that the distance that a body moves from rest under uniform
acceleration is proportional to the square of the time taken.
One would expect that Galileo's understanding of the
pendulum, which he had since he was a young man, would have led him to design a
pendulum clock. In fact he only seems to have thought of this possibility near
the end of his life and around 1640 he did design the first pendulum clock.
Galileo died in early 1642 but the significance of his clock design was
certainly realised by his son Vincenzo who tried to make a clock to Galileo's
plan, but failed.
It was a sad end for so great a man to die condemned
of heresy. His will indicated that he wished to be buried beside his father in
the family tomb in the Basilica of Santa Croce but his relatives feared, quite
rightly, that this would provoke opposition from the Church. His body was
concealed and only placed in a fine tomb in the church in 1737 by the civil
authorities against the wishes of many in the Church. On 31 October 1992, 350
years after Galileo's death, Pope John Paul II gave an address on behalf of the
Catholic Church in which he admitted that errors had been made by the
theological advisors in the case of Galileo. He declared the Galileo case
closed, but he did not admit that the Church was wrong to convict Galileo on a
charge of heresy because of his belief that the Earth rotates round the sun.
J J O'Connor and E F Robertson
Список
литературы
Для подготовки
данной работы были использованы материалы с сайта http://www-history.mcs.st-andrews.ac.uk/