Сборник рефератов

Доклад: Новые технологии мониторов

Применение

Достаточно логично, что первым коммерческим применением проводящего пластика стали проводники. На данный момент такие пластики по проводимости приближаются к меди и имеют срок службы порядка 10 лет. Они применяются (в частности, компанией Matsushita) для изготовления электродов в батареях, проводящего покрытия электростатических динамиков, антистатических покрытий, и, что особенно важно, для нанесения проводящих дорожек на печатных платах. Глобальной целью в этом направлении компания CDT считает ни много, ни мало - вытеснение меди в качестве материала для изготовления проводящих дорожек печатных плат. Правда, для этого необходимо еще увеличить срок службы и повысить проводимость пластика.

Однако наиболее интересным применением пластиковых полупроводников на данный момент является создание разного рода устройств отображения информации на их базе. О том, что полупроводящий пластик под действием электрического тока может испускать фотоны (то есть, светиться), знали давно. Но крайне низкая (0.01%) квантовая эффективность этого процесса (отношение числа испущенных фотонов к числу пропущенных через пластик зарядов) делала практическое применение этого эффекта невозможным. За последние 5 лет компания CDT совершила прорыв в этом направлении, доведя квантовую эффективность двуслойного пластика до 5% при излучении желтого света, что сравнимо с эффективностью современных неорганических светодиодов (LED). Помимо повышения эффективности удалось расширить и спектр излучения. Теперь пластик может испускать свет в диапазоне от синего до ближнего инфракрасного с эффективностью порядка 1%.

По заявлению технического директора CDT Ltd. Пола Мея (Paul May), компании удалось достичь срока службы более 7000 часов при 20Со и около 1100 часов при 80Со без ухудшения характеристик для устройств, произведенных и эксплуатирующихся в нормальных атмосферных условиях, и срока хранения устройств при воздействии яркого света и повышенной температуры без потери работоспособности (shell-life) более 18 месяцев. С использованием "инкапсуляции", то есть помещения устройств в специальный защитный корпус, "срок хранения" возрастает до 5 лет, что на данный момент является фактическим стандартом. При этом компания продолжает работы в этом направлении, стремясь довести срок жизни LEP-устройств хотя бы до 20000 часов, что, по мнению инженеров компании, достаточно для большинства применений.

О том, что промышленный мир серьезно относится к LEP-технологии, свидетельствует покупка компанией Philips Components B.V. лицензии на использование этой технологии и инвестиции Intel в компанию CDT. Итак, что же есть у компании на сегодняшний день.

LEP-дисплеи: день сегодняшний

На сегодняшний день компания может представить монохромные (желтого свечения) LEP-дисплеи, приближающиеся по эффективности к жидкокристаллическим дисплеям LCD (Liquid Crystal Display), уступающие им по сроку службы, но имеющие ряд существенных преимуществ.

Поскольку многие стадии процесса производства LEP- дисплеев совпадают с аналогичными стадиями производства LCD, производство легко переоборудовать. Кроме того, технология LEP позволяет наносить пластик на гибкую подложку большой площади, что невозможно для неорганического светодиода (там приходится использовать матрицу диодов).

гибкость LEP

Поскольку пластик сам излучает свет, не нужна подсветка и прочие хитрости, необходимые для получения цветного изображения на LCD-мониторе. Больше того, LEP-монитор обеспечивает 180-градусный угол обзора.

Видно под любым углом

Поскольку устройство дисплея предельно просто: вертикальные электроды с одной стороны пластика, горизонтальные - с другой, изменением числа электродов на единицу протяженности по горизонтали или вертикали можно добиваться любого необходимого разрешения, а также, при необходимости, различной формы пиксела.

Поскольку LEP-дисплей работает при низком напряжении питания (менее 3 V) и имеет малый вес, его можно использовать в портативных устройствах, питающихся от батарей.

Поскольку LEP-дисплей обладает крайне малым временем переключения (менее 1 микросекунды), его можно использовать для воспроизведения видеоинформации.

Поскольку слой пластика очень тонок, можно использовать специальные поляризующие покрытия для достижения высокой контрастности изображения даже при сильной внешней засветке.

Эти преимущества плюс дешевизна привели к возникновению у LEP-технологии достаточно радужных перспектив.

LEP-дисплеи: день завтрашний

День 16 февраля 1998 года стал историческим для LEP-технологии: компании CDT и Seiko-Epson продемонстрировали первый в мире пластиковый телевизионный экран.

первый монитор, сделанный по технологии LEP

Правда, он пока черно-белый (точнее - черно-желтый) и размером всего 50 мм2, но толщина в 2 мм впечатляет. Уже сейчас такие дисплеи могут найти применение в видеокамерах и цифровых фотоаппаратах, а к концу года компании планируют представить полноразмерный цветной дисплей (не уточняя, правда, что такое "полный размер").

Причины, по которым Seiko-Epson приняла участие в этом проекте, по словам Генерального менеджера по базовым исследованиям (General Manager of basic research) компании доктора Шимоды (Dr. Shimoda), заключаются в том, что сочетание LEP-технологии с многослойной TFT (Thin Film Transistor) технологией и технологией струйной печати, в которых Seiko-Epson является мировым лидером, а также возможность использования для производства LEP-дисплеев большей части уже имеющегося оборудования позволит достичь быстрого прогресса в данной программе. "LEP-дисплеи, - считает доктор Шимода, - станут конкурентоспособными не только по сравнению с LCD, но и по сравнению с обычными дисплеями на базе CRT (Catod Ray Tube, или электронно-лучевая трубка) как по качеству, так и по цене.


4. Плазменные дисплеи

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными поверхностями. В качестве газовой среды обычно используется неон или ксенон. Разряд в газе протекает между прозрачным электродом на лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение, которое, в свою очередь, инициирует видимое свечение люминофора. В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости. Люминофоры излучают один из основных цветов: красный, зелёный или синий. Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично. Первая трудность — размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному. Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома — он проводит ток намного лучше, но, к сожалению, непрозрачен.

Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

•        Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+

•        Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3

•        Синий: BaMgAl10O17:Eu2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280x768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние — в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, — подобно сканированию лучом на ЭЛТ-мониторах.


Преимущества и недостатки плазменных дисплеев

Преимущества

Преимущества

Плазменная технология имеет отдельные преимущества над ЖК. Во-первых, люминофоры для плазменного телевизора обеспечивают более сочные цвета в более широком диапазоне. Цветовой диапазон плазменных экранов намного шире, чем у ЖК-телевизоров. Если сравнивать с ЭЛТ-мониторами, то цветовой диапазон "плазмы" в ряде случаев бывает хуже, поскольку у ЭЛТ условия для возбуждения люминофора гораздо лучше: энергия электронов выше, чем у УФ-излучения.

Преимущества

Затем, углы обзора шире, чем у ЖК-дисплеев. Основной причиной является то, что пиксели в "плазме" как бы сами излучают свет, а у ЖК-мониторов свет от лампы подсветки проходит через кристалл пикселя. Кроме того, плазменным панелям не нужен поляризатор.

Наконец, контрастность "плазмы" аналогична лучшим ЭЛТ-телевизорам. Основная тому причина - глубокий чёрный цвет. Выключенный пиксель не излучает цвет совсем, в отличие от пикселей ЖК. Кроме того, плазменные телевизоры обладают большей яркостью, чем ЭЛТ-мониторы, обеспечивая от 900 до 1000 кд/м². Здесь есть нюанс. В отличие от ЭЛТ и ЖК в "плазме" физически невозможно обеспечить такую яркость по всему экрану. Только на отдельных площадях. Дело в том, что для запитки такого "кипятильника" потребуется источник мощностью несколько киловатт. А мощные драйверы микросхем управления просто расплавятся! Поэтому то в плазме используется принудительное охлаждение вентиляторами. К сожалению, КПД преобразований "электрическая энергия - излучение" в плазме невысокий. Чтобы избежать этого явления применяется "военная хитрость" - анализируется суммарная потребляемая мощность. И если есть опасность превышения лимита - идёт принудительный сброс средней яркости экрана.

Также следует заметить, что плазменные дисплеи могут достигать больших размеров (с диагональю от 32" до 50") с минимальной толщиной. Это очень важное преимущество по сравнению с ЭЛТ-дисплеями, когда большой диагонали сопутствуют громоздкие габариты. Сейчас, кстати, есть приличные модели ЭЛТ-телевизоров с относительно небольшой толщиной.

 

Весомые недостатки

У плазменных панелей есть характерное свойство: большой размер пикселей. Достичь размера пикселя меньше 0,5 или 0,6 мм практически невозможно. Поэтому плазменные телевизоры с диагональю меньше 32" (82 см) попросту не существуют. Для обеспечения достойного разрешения у производителей плазменных панелей нет другого выбора, кроме как повышать размер дисплея с 32 до 50 дюймов (с 82 до 127 см).

Что касается качества картинки, то и здесь не всё гладко. Проблемы связаны с природой пикселей. Для излучения света пиксель плазмы требует электрического разряда. Он может либо гореть, либо не гореть, но промежуточного состояния нет. Потому для управления яркостью свечения производители используют метод импульсно-кодовой модуляции.

Весомые недостатки

Метод такой. Чтобы пиксель горел ярко, его нужно часто зажигать. Для получения более тёмного оттенка зажигать пиксель можно реже. Глаз человека не заметит отдельные вспышки и усреднит значение яркости. Этот метод хорошо работает, но и не свободен от недостатков. Если средние и яркие оттенки отображаются вполне прилично, то тёмные оттенки страдают от недостатка света - их очень трудно отличить друг от друга.

Если получающаяся картинка с расстояния выглядит цельной, то на близком расстоянии вы вряд ли сможете ей наслаждаться. Установлено, что человеческий глаз не замечает мерцания с частотой выше 85 Гц, но это не всегда так.

По своей природе зрительная система состоит из собственно датчиков и "программы обработки" в мозге. Датчики относятся к интеграционному типу (с химической природой: разложение веществ под действием светового излучения, преобразование в электрические потенциалы и передача сигналов в мозг). Интегрирование параметров яркости и цвета происходит по времени и по площади. Если площадь объектов мала, то мерцание объектов мало заметно. Но если в поле зрения попадут объекты большей площади с модуляцией по яркости 85 Гц, то они будут обнаружены глазом! То есть датчиками, а не мозгом! Особую роль в деле обнаружения высокочастотных составляющих играет периферическое зрение. Именно оно и позволяет отлавливать компоненты 85-90 Гц.

Утомление глаз происходит вследствие того, что создаются некомфортные условия для спорадического сканирования поля зрения. Если обнаруживаются "опасные" объекты (с модуляцией, например, 85 Гц) то глазные мышцы стараются просканировать именно периферийную часть, которая имеет наибольшую чувствительность для локализации таких объектов. В обычной ситуации мышцы не рассчитаны на такие предельные нагрузки. Отсюда и накапливается усталость глаз. Дополнительная усталость возникает и в мозге. Принятые стимулы от "вибрирующих" пространственных объектов относятся к категории опасных, на фильтрацию событий тратятся дополнительные "мощности".

Чтобы избежать появления в изображении на плазменном экране артефактов и мерцания, связанных с ШИМ модуляцией, применяются изощрённые методы нелинейной импульсной модуляции с равномерным "размазываем" стимулов яркости по всему полю экрана.

К сожалению, полностью избавиться от мерцания на плазменных панелях не удаётся, особенно во время просмотра с близкого расстояния. Так что картинка на плазменном телевизоре больше, но и сидеть от экрана придётся дальше. Следовательно, большего погружения в фильм не получится.

Кроме того, у пикселей плазмы выгорает люминофор. На ЭЛТ-мониторе при долговременном выводе одной и той же картинки, она станет заметна на экране. После этого даже при смене картинки предыдущая будет видна, как будто она выгравирована на экране. Этот феномен связан с преждевременным старением люминофоров. Если они постоянно работают, то люминофоры стареют и становятся менее эффективными. Так как плазменные дисплеи тоже используют люминофоры, они выгорают точно так же, как и трубки телевизоров.

Впрочем, при стандартных условиях эксплуатации телевизора проблем возникнуть не должно, так как картинка на экране постоянно меняется, и пиксели стареют, более-менее, одинаково. Но для некоторых бизнес-применений (экран в магазине) могут возникнуть проблемы. Например, если на экране отображается один и тот же канал в режиме 24/7, то на нём могут выгореть пиксели логотипа (МТВ, НТВ и т.д.) - ведь они отображаются почти в каждом кадре. То же самое относится и к рекламным экранам, когда на них долго демонстрируется какая-либо картинка.

Именно этот феномен и ограничивает срок службы плазменных дисплеев. Несмотря на слухи, плазменные панели не "текут" и их не надо подзаряжать. Но люминофоры стареют, и с этим, к сожалению, ничего не поделаешь. Что ещё хуже, не все сцинтилляторы стареют одинаково: синий канал всегда выгорает раньше (хотя, надо сказать, ситуация сегодня намного улучшилась по сравнению с первыми плазменными панелями).

Наконец, отметим ценовой фактор: плазменные дисплеи довольно дороги. И здесь следует учитывать не только себестоимость самих панелей, которые трудно производить, но и то, что электроника панелей требует высоковольтных полупроводниковых схем, которые работают на пределах возможностей материалов. Контрольные цепи электродов должны выдерживать несколько сотен вольт на высоких частотах. Одним из последствий высоких напряжений является энергопотребление плазменных дисплеев, которое всегда выше, чем у ЖК-мониторов. Например, 42" (107 см) плазменный дисплей потребляет 250 Вт или даже выше, а ЖК-панель с той же диагональю будет потреблять всего 150 Вт.

Сферы применения плазменных панелей

Плазменные панели чаще всего встречаются в высококачественных видеосистемах большого формата. Их большой размер и хорошее качество картинки прекрасно подходят для просмотра DVD или телевидения высокого разрешения. Плазменные панели традиционно позиционируются на high-end сектор рынка, где проблемы высокой цены, старения люминофора и высокого энергопотребления вторичны по сравнению с качеством. Хотя, надо сказать, последние поколения ЖК-телевизоров начали вытеснять "плазму" и с этого рынка.

Если заглянуть дальше в будущее, то вполне очевидно, что ЖК будут "отъедать" рынок плазменных панелей, поскольку их диагональ продолжает увеличиваться. И причина проста: по мере наработки технологии производить ЖК-панели становится проще, да и стоят они дешевле.

Если ситуацию не изменят какие-либо инновации, плазменные панели останутся прерогативой специфических сфер использования, когда нужно выводить очень большую картинку для просмотра с большого расстояния, что сильно сужает область использования.

Проблема мерцания плазменных панелей также объясняет, почему эта технология мало подходит для компьютерных мониторов.


5. Электронная бумага

Электронная бумага — это аналогичное по своим функциям дисплею устройство, но к нему предъявляются и специфические требования. Они связаны именно с тем, что изначально оно задумано, как возможная альтернатива для бумаги, на которой традиционно выходят газеты, журналы и книги. Электронная бумага должна иметь очень небольшой вес, быть гибкой и экономной в энергопотреблении. Электронная бумага должна быть дешевой и надежной, поскольку она может быть использована в любой обстановке. Кроме того, желательно, чтобы изображение на ней было не подсвечено, как на обычном дисплее, а видимо в отраженном свете, как текст или картинка на обычной бумаге. Это более естественно воспринимается как человеческим зрением, так и на психологическом уровне.

Технология

Технология электронной бумаги (EPD — Electronic paper display) была разработана учеными из Массачусетского технологического института (Massachusetts Institute of Technology) в 1997 году. В том же году была создана корпорация E Ink (E Ink Corporation), которая и занимается технологией, ее совершенствованием и коммерциализацией.

«Цифровая бумага» была разработана с целью создания дисплеев нового типа, которые по оптическими и механическими характеристиками были бы схожи с обычной бумагой. Базовыми элементами таких дисплеев являются микрокапсулы, диаметр которых не превышает толщину человеческого волоса. Внутри каждой капсулы находится большое количество пигментных частиц (диаметр частицы не превышает 1-5 мкм) двух цветов: положительно заряженные белые и отрицательно заряженные черные (заряд наносится с помощью специального заряженного полимера), а все внутреннее пространство капсулы заполнено прозрачной жидкостью.

основы технологии

Слой капсул расположен между двумя рядами (сверху — прозрачных, снизу — непрозрачных), образующих координатную сетку. Когда некоторому тыльному участку активной области экрана придается положительный электрический заряд, во всех микрокапсулах на этом участке белые частицы пигмента перемещаются в «верхнюю» часть. В то же самое время электрическое поле тянет черные частицы на «нижнюю» сторону капсул, и они будут скрыты от взора пользователя. В результате действия такого процесса пользователь сможет наблюдать появление на экране электронно-чернильного дисплея белого пятна — точки, пикселя белого цвета. Поменяв полярность приложенного электрического потенциала, можно добиться того, чтобы черные частицы пигмента оказались на лицевой стороне микрокапсул, а белые — на тыльной. Тогда на том же месте на экране дисплея сформируется черное пятно.

дисплей

Если сформировать управляющую электродами матрицу и расположив над ней активную область экрана с микрокапсулами, можно будет создавать на электронно-чернильном экране довольно большие и сложные изображения.

Благодаря остаточным зарядам и силам Ван-дер-Ваальса, дисплеи на базе электронных чернил способны сохранять изображение на экране даже при отсутствии электропитания (подача напряжения на управляющие электроды необходима лишь для переключения состояния пиксела), что наряду с отсутствием лампы подсветки обеспечивает очень низкий уровень энергопотребления. Такие дисплеи являются отражающими и обеспечивают хорошую читаемость изображения при любом освещении. В качестве подложки для создания дисплеев на основе электронных чернил можно использовать различные материалы: стекло, пластик, металлическую фольгу, ткань и даже бумагу.

Развитие технологии

Разумеется, развитие любой технологии невозможно без финансовых вливаний в НИОКР. Компания E-Ink своевременно заботилась о поиске партнеров и заключении стратегических соглашений для коммерческого продвижения дисплеев на электронных чернилах на массовый рынок.

Например, весной 2001 г в список стратегических партнеров компании E-Ink вошла TOPPAN Printing Company — мировой лидер по производству цветных фильтров для плоскопанельных мониторов. Компании заключили партнерское соглашение по разработке цветных дисплеев на электронных чернилах. Согласно условиям этого соглашения, TOPPAN Printing Company вложила 5 миллионов долларов инвестиций в E-Ink. Заключенный контракт должен был дать TOPPAN Printing Company эксклюзивные права (в мировом масштабе) на разработку и производство цветных фильтров для дисплеев на электронных чернилах.

Нужно сказать, что сотрудничество компаний оказалось довольно успешным — прототип цветного электронно-чернильного дисплея, использующего цветовые фильтры, был представлен ИТ-общественности уже в том же 2001 году. А уже в феврале 2002 года E-Ink и TOPPAN Printing Company заключили новое инвестиционное соглашение. Согласно его условиям компании становились стратегическими партнерами по коммерциализации совместно разрабатываемой технологии. В рамках соглашения TOPPAN Printing Company становился эксклюзивным производителем покрытия передних панелей (FPL) для дисплеев использующих электронные чернила. По условиям достигнутого соглашения TOPPAN Printing Company вложила еще 25 миллионов долларов в компанию E-Ink.

Еще одним ключевым партнером E-Ink стала корпорация Royal Philips Electronics. В самом начале 2001года E-Ink и Philips Components заявили о совместной разработке электронно-чернильных дисплеев высокого разрешения. Такие дисплеи посчитали тогда весьма перспективными для использования в таких устройствах как электронные книги (eBooks), КПК, устройства мобильной коммуникации, и др.

Согласно достигнутому обоюдному соглашению, Philips Venture Capital и Philips Components обязались осуществить инвестиции в E-Ink, а также помочь в развитии исследовательской программы, с целью довести технологические наработки до стадии коммерческой реализации. Договором предусматривалось, что компания E-Ink займется собственно самими электронными чернилами, а в Philips сосредоточатся на разработке активно-матричных управляющих панелей и электронно-чернильных дисплеев в целом. По условиям соглашения подразделение Philips Components получало глобальные эксклюзивные права в мировом масштабе на производство модулей для создаваемых дисплеев.

Стоит признать, что работы у компаньонов продвигались довольно успешно. Менее чем через четыре месяца после заключения соглашения Philips Components и E-Ink Corporation продемонстрировали первый работающий прототип электронно-чернильного дисплея. Весной 2002 года E-Ink и Royal Philips объявили об успешном завершении первой фазы их соглашения, и заявили о намерении начать совместное коммерческое продвижение разработанных технологий на рынок. Партнерами было дано обещание начать массовые коммерческие поставки дисплеев на электронных чернилах уже к середине 2003 г. То есть уже полтора года как мы должны были бы встречать электронно-чернильные экраны во всевозможных «наладонниках» и мобильных телефонах и т. п.

Однако этого не произошло. Далее мы попробуем разобраться, почему такого не случилось, а пока вернемся к сонму компаний, поддержавших E-Ink Corporation в ее благородном, в общем-то, начинании.

E-Ink заключила соглашение с Vossloh System-Technik GmbH (VST), по условиям которого базирующиеся на технологии электронных чернил информационные системы должны были стать доступными для европейской транспортной индустрии все в том же 2003 году. E-Ink обещала разработать электронно-чернильные экраны сегментного и символьного типа, а VST, со своей стороны, взяла обязательство интегрировать эти элементы в свои информационные системы для пассажиров.

E-Ink удалось также договориться и с Air Products and Chemicals, Inc.: компании заявили об объединении усилий по разработке материалов следующего поколения для дисплеев на электронных чернилах.

Нашла E-Ink общий язык и с Lucent/Bell Labs. В рамках сотрудничества с этой компанией, E-Ink была лицензирована технология пластиковых транзисторов Bell Labs. В свою очередь Lucent's New Ventures Group осуществила многомиллионную инвестицию в E-Ink. Компании начали активно сотрудничать в разработке электронной бумаги на основе технологии гибких пластиковых электронных дисплеев, создаваемых в процессе печати экранов, который очень похож на привычную технологию струйной печати чернилами на бумаге.

Вот такие именитые были у E-Ink партнеры, такие немалые инвестиции были вложены в разработку новых технологий, такие амбициозные планы по завоеванию рынка были поставлены партнерами. И мы вправе поинтересоваться, а где же нынче все эти разработки? От технологии, которая уже в 2003 году была призвана завоевать рынок, в 2005-м пока ни слуху, ни духу... В чем причина?

Достоинства

Безусловно, дисплеи на электронных чернилах не были чисто «бумажным» проектом, призванным выкачать деньги из инвесторов. Технология электронных чернил действительно существует, ее развивали и совершенствовали. Давайте посмотрим, какие достоинства она сулила в результате своего внедрения.

Технология дисплеев на электронных чернилах была призвана обеспечить полноценное визуальное информационное общение пользователей с различными электронными устройствами, путем реализации условий чтения информации с экранов всевозможных устройств, словно с обычного бумажного листа.

Да-да, дисплей на электронных чернилах по своим «изобразительным» характеристикам схож с самым привычным для чтения носителем — бумажными страницами. Поэтому рассматриваемую технологию еще иногда называют технологией «электронной бумаги».

Исходя из этого, экраны мобильных устройств с такими дисплеями должны были бы быть удобочитаемыми, а еще их можно было выполнить не просто портативными, но и гибкими (помните привнесенные в разработку технологии Lucent/Bell Labs?).

Стало быть, пользователям электронных устройств собирались представить вариант экрана по визуальным характеристикам неотличимый от распечатки на листе бумаги, но при этом имелась возможность менять картинки на этом листе — блестяще, нечего сказать. Кроме того, изображение на электронно-чернильных экранах от E-Ink, без сомнения, гораздо более удобно для просмотра (уточню — в обычных условиях), чем на иных типах распространенных экранов. Производитель утверждает, что картинка смотрится и впрямь как на бумаге (Superior Paper-Like Readability) — отсутствует мерцание, «плавание» изображения, нечеткость символов и линий. Цветопередача картинки, сформированной на E-Ink дисплеях, не зависит от угла зрения на экран явное преимущество по сравнению с ЖК-дисплеями.

Значительным преимуществом дисплеев на электронных чернилах является и то, что состояние пигментных частиц в микрокапсулах очень стабильно. Созданное на электронно-чернильном экране изображение может устойчиво сохраняться весьма длительное время, вплоть до нескольких недель (!), не требуя при этом каких–либо затрат энергии. Дисплеи любых других типов на такое просто не способны. Из этого следует, что дисплеи на электронных чернилах отличаются крайне низким энергопотреблением, а потребляемая такими устройствами мощность во многом зависит именно от частоты изменения картинки на экране.

Конечно, гибкость таких дисплеев тоже можно посчитать немаловажным преимуществом — приятно взять с собой большой экран, свернув его.

Также, и это немаловажно, производителем было заявлено, что прототипы электронно-чернильных дисплеев от E-Ink ударопрочные и очень долговечные. Кроме того, немаловажным плюсом могло стать то, что массовое изготовление таких дисплеев обещало быть очень дешевым. Как вы помните, благодаря привлечению разработок от Lucent/Bell Labs, по одному из вариантов реализации технологии дисплеев на электронных чернилах, эти самые «чернила» просто печатаются на поверхности экрана, формируя тонкую пленку активного слоя. Именно эта пленка затем «управляется» электрической схемой дисплея для формирования матрицы пикселей.

Важна и универсальность: технологию электронных чернил можно было использовать как для создания простейших символьных и сегментных дисплеев, так и для изготовления более «продвинутых» графических экранов, в том числе управляемых с помощью активной TFT матрицы. Значительным достоинством таких дисплеев могло бы оказаться то, что, благодаря использованию электронных чернил, можно добиться очень высокого разрешения экрана.

Поскольку размеры микрокапсул с пигментом невелики, предельное разрешение электронно-чернильного экрана фактически определяется разрешением используемой управляющей электронной матрицы, а здесь возможности для улучшения характеристик очень велики.

Достоинства технологии EID мы можем оценить, посмотрев на характеристики одного из прототипов дисплеев на электронных чернилах, о котором в свое время рассказал журнал Nature. Это 3-х дюймовый гибкий дисплей с разрешением 160 х 240 пикселей. Все устройство размещено на подложке из очень тонкого листа нержавеющей стали. Непосредственно над листом находится тонкий изолированный слой управляющих электродов, над которым, в свою очередь, уже нанесен слой электронных чернил с микрокапсулами. Данный монохромный дисплей имеет толщину всего 0.3 мм — конкурирующим технологиям такое и не снилось. А если добавить к сказанному тот факт, что данный дисплей очень гибок — он в рабочем состоянии (!) может быть скручен в трубочку диаметром полтора сантиметра без малейшей потери качества изображения то, казалось бы, конкурентам нечего делать на поприще, где присутствует столь революционная технология.

Но смотрим характеристики дальше. На экране устройства «новая» текстовая страничка формируется за четверть секунды. Маловато будет. 4 кадра в секунду — это, знаете ли, очень нехороший показатель даже для экранов мобильных устройств.

Ага, так может быть причина загадочного «не появления» на массовом рынке дисплеев с технологией EID кроется как раз в недостатках, свойственных этой самой технологии электронных чернил? Давайте попытаемся объективно посмотреть на присущие электронно-чернильным дисплеям «пороки».

Недостатки

Безусловно, по длительности показа единожды созданного изображения, сохраняемого без дополнительных затрат энергии, другим дисплеям с изделиями от E-Ink трудно потягаться. Однако на дисплеях современных «наладонников» или мобильников обычно демонстрируется вовсе не статичная картинка (а в экономичном режиме их дисплей и вовсе может быть отключен с целью энергосбережения, так что при «простое» устройства ощутимого выигрыша нет). На экранах современных мобильных аппаратов почти постоянно происходят какие-то регулярные изменения изображения. Причем порой весьма динамичные, особенно если речь идет о дисплеях КПК и прочих «ручных» электронных устройств, куда было «нацелила» свои дисплеи E-Ink. И тут мы подобрались к первому, но большому но. Многие наверняка не понаслышке знают (хотя бы исходя из личного опыта игр на старых мобильных телефонах), что такое слишком инерционный дисплей для динамичной графики — на таком дисплее движущиеся объекты порой и вовсе «исчезают из виду». Так вот, дисплеям на электронных чернилах в этой области как раз похвалиться, увы, нечем. По современным меркам инерционность электронно-чернильных экранов просто громадна.

Напоминаю, инерционность в общем случае определяет насколько быстро «старое» изображение на экране дисплея может быть сменено «новым»; чем меньше этот параметр у устройства, тем лучше.

У рассмотренной выше модели электронно-чернильного дисплея заявлена частота смены кадров примерно 4 в секунду, что соответствует инерционности в 250 мс. Это очень большая инерционность — например, у не самых лучших современных ЖК-дисплеев таковая находится на уровне около 25 миллисекунд, то есть в 10 раз лучше (речь в данном случае идет об одной и той же задержке при переключении пикселя с совершенно черного цвета абсолютно белым и наоборот).

Насколько мне известно, компания E-Ink обещала понизить инерционность своих электронно-чернильных экранов до 150 мс. Но все равно, этот показатель очень далек от оптимального такая задержка соответствует частоте смены кадров около 7 за секунду. А этого явно недостаточно для современных мобильных устройств, все смелее демонстрирующих свои возможности по воспроизведению видеопотока. Усугубляет в целом не радужную картину с EID еще и то, что возможности цветопередачи у дисплеев на электронных чернилах, прямо скажем, слабоваты.

Еще один интересный момент. Созданные E-Ink дисплеи не нуждаются в подсветке, они работают в отраженном свете, прямо как настоящая бумага. Это отнесено производителем к безусловным достоинствам данной технологии. Да, это чрезвычайно удачно с точки зрения энергосбережения — в мобильных устройствах отпадает необходимость расходовать заряд аккумуляторов на подсветку экрана. Однако здесь возникает и второе большое но. Получается что яркость, контраст и цветопередача дисплеев на электронных чернилах сильно зависят от условий внешнего освещения. А ведь оно для дисплеев, особенно в случае мобильных устройств, оптимально далеко не всегда. А об актуальности подсветки экрана в темное время суток или при работе в условиях плохо освещенных помещений и говорить не приходится.

Что касается гибкости дисплеев E-Ink, то это их преимущество и подавно нельзя назвать неоспоримым. Существуют, например, гибкие ЖК-экраны, хотя до гибкости дисплеев созданных по технологии EID они, конечно, не дотягивают. Однако, откровенно говоря, для дисплея умение изгибаться — не самая главная, а порой даже и вредная особенность. Ведь гибкий экран запросто может демонстрировать искаженные, искривленные изображения. Представьте, вы смотрите на дисплей, чтобы насладится действительно плоским изображением, за которое еще недавно так активно боролись все производители мониторов, а гибкий экран возьми, и искривись по какой-либо причине. Например, он был долго свернут или искривлен, и приобрел «память формы». Вы давай экран ровнять — а он снова изгибается... Скажите, разве приятно будет смотреть на «кривое» изображение? И просто страшно подумать, что будет, если гибкий экран ненароком помнется.

Как видим, недостатки дисплеев на электронных чернилах весьма существенны. Именно по этой причине E-Ink, вероятно, так и не удалось найти ни одного производителя техники, которого удовлетворили бы характеристики предлагаемых компанией дисплеев созданных по EID технологии. А потому потребители так и не увидели электронных чернил в массово выпускаемых электронных устройствах.

Что касается больших информационных или рекламных щитов, на которые тоже нацеливалась E-Ink со своей технологией, то и здесь успехов компания не достигла.

Вывод

Есть технологии, которые опережают свое время. Есть и такие, которые от него отстают. Вероятно, технология электронных чернил относится именно к последним — появись она на пяток лет раньше, возможно, у нее и были бы неплохие перспективы на рынке. А теперь...

Теперь на место под солнцем претендуют дисплеи создаваемые по технологии OLED (Organic Light Emitting Device, органические светоизлучающие устройства на основе полимеров). Они обещают быть очень экономичными, очень тонкими и не менее гибкими, чем электронно-чернильные дисплеи. А с учетом высокой яркости и контрастности, возможностей цветопередачи, обеспечиваемых широких углов обзора, а также готовности OLED дисплеев работать при любых условиях внешнего освещения, у дисплеев созданных по технологии EID просто не остается никаких шансов выстоять в конкурентной борьбе.


6. Сенсорные технологии

Благодаря широкому распространению мобильных устройств, а также различной потребительской электроники, в частности карманных персональных компьютеров, переносных навигаторов и игровых приставок, сенсорные дисплеи все более уверенно занимают собственную нишу во многих сторонах нашей жизни.

Touchscreen

В настоящее время используются несколько видов сенсорных дисплеев, однако наиболее широко применяются следующие четыре технологии:

Резистивная (Resistive);

Инфракрасная (Infrared);

Емкостная (Capacitive);

Поверхностно-акустической волны (SAW).

Все указанные технологии имеют свои собственные отличительные черты, выгоды, преимущества и недостатки.

Резистивная технология сенсорных экранов

Резистивный сенсорный экран имеет многослойную структуру, состоящую из двух проводящих поверхностей, разделенных специальным изолирующим составом, распределенным по всей площади активной области экрана.

При касании наружного слоя, выполненного из тонкого прозрачного пластика, его внутренняя проводящая поверхность совмещается с проводящим слоем основной пластины (может быть сделана из стекла или полиэстера), играющей роль каркаса конструкции, благодаря чему происходит изменение сопротивления всей системы. Это изменение фиксируется микропроцессорным контроллером, передающим координаты точки касания управляющей программе компьютера.

Срабатывание происходит от нажатия пальцем или другим твердым предметом. Резистивные сенсорные экраны устойчивы к воздействию грязи, пыли, жира и многим жидкостям (таким как вода, ацетон, пиво, чай, кофе и др.), в том числе и некоторым химически едким.

Основные особенности резистивных сенсорных экранов (touchscreen):

превосходные показатели качества;

отличные технические характеристики;

ввод информации как стилусом, так и пальцем;

типичная прозрачность - 80%.

Резистивная продукция является самой привлекательной в ценовом отношении, так как стоит достаточно недорого. Также к преимуществам резистивных дисплеев можно отнести высокое разрешение, возможность использовать обычный металлический или пластиковый стилус, устойчивость к таким воздействиям, как пыль, грязь, вода и интенсивное освещение. Однако у данного вида продукции имеются и свои недостатки. К примеру, четкость изображения этого вида сенсорных дисплеев недостаточно высока. А сами дисплеи нуждаются в регулярной калибровке вследствие того, что начинается рассогласовывание места реакции системы с местом нажатия. Иногда возможен и такой вариант, что резистивный дисплей может реагировать синхронно более чем на одно нажатие. Помимо всего вышеперечисленного, такие дисплеи достаточно хрупкие, что в значительной мере ограничивает их использование.

LG Prada (KE850)

Емкостная технология сенсорных экранов

Чувствительный элемент емкостного сенсорного экрана представляет собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие. Вдоль краев стекла расположены узкие печатные электроды, равномерно распределяющие низковольтное электрическое поле по проводящему покрытию. Поверх проводящего слоя наносится защитное покрытие. При прикосновении к экрану образуется емкостная связь между пальцем и экраном, что вызывает импульс тока в точку контакта. Электрический ток из каждого угла экрана пропорционален расстоянию до точки касания, таким образом, контроллеру достаточно просто сравнить эти токи для определения места касания. Результат - прозрачный экран с малым временем отклика, обладающий высокой прочностью и долговечностью.

На сегодняшний день, сенсорный экран с технологией ThruTouch является уникальным и единственным сенсорным экраном, предназначенным для использования в уличных платежных терминалах или информационных киосках.

Данная технология первоначально была применена в таких моделях, как сотовые телефоны iPhone и LG Prada. При этом сенсор располагался под слоем минерального стекла, дававшего ему дополнительную защиту от царапин, а, следовательно, повышавшим его надежность. Электрические свойства проводников претерпевают изменение уже в момент приближения пальца к дисплею. Именно поэтому iPhone великолепно откликается даже на легкие касания. Проекционно-емкостные дисплеи позволяют в одно и то же время фиксировать несколько нажатий. К примеру, в iPhone для зумирования применяют двухпальцевые жесты.

iPhone, благодаря своей популярности, удалось стать прародителем характерного дизайна для большей части «сенсорных» телефонов.

Отличительной чертой стал элегантный моноблок с крупным сенсорным дисплеем и минимальным числом кнопок.

Экран iPhone отличается великолепным разрешением пикселей (320х480). Картинка на дисплее живая и яркая, с большим углом обзора и к тому же безупречным поведением на солнце. Подсветка экрана быстро меняется в зависимости от степени освещенности.

Дисплей iPhone также снабжен датчиками, реагирующими на движение, что дает возможность автоматически изменять его ориентацию при повороте телефона.

iPhone

Стилус для iPhone не предусмотрен, к тому же устройство на него не реагирует. Однако удобство работы с дисплеем от этого никак не страдает.

iPhone удобен прежде всего для работы с Интернетом, поэтому большая часть фишек предназначена для работы в браузере. К ним можно отнести, к примеру, оптимизацию размеров интернет-страниц путем двойного нажатия.


Технология поверхностно-акустической волны

Данный принцип создания сенсорных экранов является технологичным и дорогостоящим. Он позволяет достичь точности при фиксировании действий пользователя за счет компенсации возможных погрешностей при определении экранных координат мощным математическим аппаратом программной надстройки. В углах такого экрана размещается специальный набор пьезоэлектрических элементов, на которые подается электрический сигнал частотой 5 МГц. Этот сигнал преобразуется в ультразвуковую акустическую волну, направляемую вдоль поверхности экрана, а сам экран представляется для программы управления сенсорными датчиками в виде цифровой матрицы, каждое значение которой соответствует определенной точке экранной поверхности.

В ограничивающую экран рамку вмонтированы так называемые отражатели, распространяющие ультразвуковую волну таким образом, что она охватывает все рабочее пространство сенсорного экрана. Специальные рефлекторы фокусируют ультразвук и направляют его на приемный датчик, который снова преобразует полученное им акустическое колебание в электрический сигнал. Даже легкое касание экрана в любой его точке вызывает активное поглощение волн, благодаря чему картина распространения ультразвука по его поверхности несколько меняется. Управляющая программа сравнивает принятый от датчиков изменившийся сигнал с хранящейся в памяти компьютера цифровой матрицей - картой экрана, и вычисляет исходя из имеющихся данных координату касания, причем значение координаты высчитывается независимо для вертикальной и горизонтальной оси.

Количество поглощенной волны преобразуется в третий параметр, определяющий силу нажатия пользователя на экран. Полученные таким образом данные передаются соответствующему программному комплексу, определяющему дальнейший алгоритм работы компьютера в ответ на действия пользователя.

Инфракрасная технология сенсорных экранов

В сравнении с предыдущей, инфракрасная технология обеспечивает высокий уровень прочности и прозрачности и менее восприимчива к факторам окружающей среды за счет возможности герметичной изоляции при монтировании на экран монитора. Вследствие этого используется в медицинских и производственных приложениях.

Вдоль границ сенсорного экрана, применяющего в своей работе принцип инфракрасных волн, устанавливаются специальные излучающие элементы, генерирующие направленные вдоль поверхности экрана световые волны инфракрасного диапазона, распределяющиеся в его рабочем пространстве наподобие координатной сетки. С другой стороны экрана смонтированы улавливающие элементы, принимающие волну и преобразующие ее в электрический сигнал. Если один из инфракрасных лучей перекрывается попавшим в его зону действия посторонним предметом, луч перестает поступать на приемный элемент, что тут же фиксируется микропроцессорным контроллером, и при этом вычисляется координата касания.

Примечательно, что инфракрасному сенсорному экрану все равно, какой именно предмет помещен в его рабочее пространство: нажатие может осуществляться пальцем, авторучкой, указкой и даже рукой в перчатке.

Сенсорно-сканирующие дисплеи

Из новинок в области сенсорных дисплеев заслуживает внимание новшество, разработанное компанией Sharp. Это сенсорный дисплей, позволяющий убрать ограничения, свойственные данной продукции, а также способный сканировать изображения. Новый тип дисплеев получил название «сенсорно-сканирующий дисплей».

В дисплее данного типа оптический сенсор добавлен в каждую точку, что дает возможность регистрировать изменения буквально до пикселя. Такая технология позволила осуществить сложный многоточечный порядок ввода в стиле iPhone, а также оборудовать устройство специальной сканирующей функцией. Для сканирования достаточно всего лишь приложить к экрану визитную карточку, которая будет сначала отсканирована, а затем распознана при помощи соответствующего программного обеспечения.

Помимо этого технология дает возможность производить дисплеи малой толщины – всего 1 мм. Это позволяет изготовить либо более тонкое устройство, либо дать дополнительное место для оборудования иными деталями.
Данное оптическое решение также позволяет применять специальные защитные слои, предохраняющие экран от царапин и иных повреждений. При этом сенсорные свойства дисплеев и качество изображения никак не страдают.

На сегодняшний день сенсорно-сканирующие дисплеи смогут использоваться в цифровых камерах и смартфонах. Однако будущие разработки будут проводиться с целью увеличить диагональ экрана до 12.1 дюйма (сейчас диагональ составляет 3.5 дюйма), что даст возможность применять данную технологию в ноутбуках.

Применение сенсорных технологий

Еще несколько лет назад сенсорные технологии были слабо распространены, сейчас можно сказать, что их развитие практически в любой сфере деятельности раскрывает новые возможности, ускоряет процессы обслуживания, упрощает взаимодействие человека с компьютером. Применение сенсорных систем основано на принципе прикосновения человека к заинтересовавшему его объекту. Простота в обращении позволяет использовать сенсорные технологии большому кругу пользователей. Антивандальное исполнение экранов, защитные от царапин технологии уменьшают процент возможности механического  повреждения. Сенсорные мониторы - это один из типичных примеров применения сенсорных технологий.

Еще несколько лет назад сенсорные технологии были слабо распространены, сейчас можно сказать, что их развитие практически в любой сфере деятельности раскрывает новые возможности, ускоряет процессы обслуживания, упрощает взаимодействие человека с компьютером.

Применение сенсорных систем основано на принципе прикосновения человека к заинтересовавшему его объекту. Простота в обращении позволяет использовать сенсорные технологии большому кругу пользователей. Антивандальное исполнение экранов, защитные от царапин технологии уменьшают процент возможности механического повреждения.

Сенсорные мониторы - это один из типичных примеров применения сенсорных технологий. Мониторы бывают как настольного исполнения, так и промышленного - встраиваемые мониторы. В качестве примеров применения сенсорных мониторов (как настольных, так и встраиваемых вариантов) можно привести следующее:

Торговля

Оснащение торговой точки сенсорным оборудованием позволит повысить скорость обслуживания клиентов и при этом снизить риск ошибок. Работа с "сенсорным" интерфейсом практически не требует подготовки. Области применения сенсорных систем в торговле поистине многообразны. Чаще всего сенсорные мониторы и моноблоки используются как POS-терминалы. Сенсорный киоск может использоваться как терминал для электронного стола заказов, служить электронным путеводителем по торговому залу, либо применяться для показа мультимедиа-презентаций. Так же сенсорный интерфейс упрощает процесс оформления покупки и позволяет индивидуализировать его.

Игровые автоматы

Сенсорный интерфейс наиболее удобен для игровых машин, устанавливаемых в казино, барах, клубах. Посетителям, которые только приобщаются к такой технике, гораздо проще и удобнее использовать сенсорный экран.

Промышленность

Сенсорный экран максимально упрощает взаимодействие человека с компьютером. Отсутствие клавиатуры и мыши означает отсутствие дополнительных отвлекающих факторов, что крайне важно в рабочих условиях промышленного предприятия.

Финансовые учреждения

В финансовых учреждениях при работе с большими объемами разных данных часто приходится использовать многомониторные системы. Работа с клавиатурой и мышью в таком случае прилично сковывает действия оператора, затрудняет работу с интерфейсами. Сенсорные технологии позволяют выполнять те же операции за более короткое время

Медицина

В медицине, где используется крайне сложное оборудование, очень важно максимально упростить работу с технически сложными системами. В работе с диагностическим оборудованием скорость реакции и безошибочность действий часто могут оказываться в буквальном смысле жизненно важными.

Гостиницы и рестораны

Оперативность и безошибочность действий оператора в сфере обслуживания является одним из ключевых звеньев успеха компании, работающей в этом секторе. Сенсорный монитор и специально разработанный под него рабочий интерфейс способны значительно повысить скорость и точность работы менеджера. Качество обслуживания в этом случае возрастает, соответственно растет и удовлетворение качеством сервиса со стороны клиентов.

Службы безопасности

Быстрое удобное реагирование на любые сигналы системы безопасности, управление различными модулями комплекса.

Транспорт

При большом количестве людей в зданиях вокзалов и аэропортов, желающих узнать какую-то информацию, удобным способом удовлетворить их, не создавая лишних очередей является установка сенсорного аппарата легкого в обращении и антивандальном исполнении экранов.

Фитнес

Сенсорные мониторы вставляются в тренажеры и человек получает возможность одновременно бежать и, например, читать, или анализировать количество сожженных калорий, задавать нагрузку одним нажатием пальца.

"Умный дом"

Сенсорная панель - один из самых современных способов управления умным домом. Представьте себе плоский экран, на котором изображены кнопки, индикаторы, любые графические изображения. В режиме реального времени можно видеть, что и где включено, а простым прикосновением руководить всем оборудованием дома. Например, на плане дома могут быть помещены изображения лампочек. Коснитесь их - и выключите свет в любой комнате.


Страницы: 1, 2


© 2010 СБОРНИК РЕФЕРАТОВ