Сборник рефератов

Дипломная работа: Разработка эффективной системы энергоснабжения на основе возобновляемых источников энергии туристической базы пансионата "Колос"

 (3.5.)

где: Nуд - удельная мощность ветра ,Вт/м2 ;

Vi - i-тая скорость ветра, м/с;

ti(Vi) - вероятность действия i-той скорости ветра во время t.

Для проектирования электроснабжения важным параметром является продолжительность штиля (V£1м/с). Из таблицы 3.4. определяем, что вероятность практического штиля в нашей зоне составляет 0,14 -0,30 в зависимости от времени года, однако максимальное количество идущих подряд штилевых дней для Республики Бурятия равно четырем /8/.Это обстоятельство следует учитывать при проектировании ветроэлектрических установок и определения глубины аккумулирования электроэнергии.

Как видно из данной главы Байкальский регион имеет колоссальный ресурс возобновляемых источников энергии, причем как солнца, так ветра, что позволяет с достаточной эффективностью внедрять установки на основе ВИЭ.


4. Технологическая часть

Как показал опыт эксплуатации экодомов, для отопления зданий в условиях Сибири /9/, использование активных солнечных систем неэффективно. Учитывая тот факт, что Гостевой дом будет использоваться в основном в летнее – осенний период целесообразнее будет использовать комбинированную систему теплоснабжения, т.е. для отопления предлагается использовать пассивную солнечную систему, а для горячего водоснабжения – солнечные коллектора с теплоносителем вода.

На рис. 4.1. представлена схема системы солнечного теплоснабжения.

Рис. 4.1.Схема системы солнечного теплоснабжения.

1-солнечный коллектор, 2- бак аккумулятор горячей воды, 3- теплообменник, 4- здание с напольным отоплением, 5- дублер, 6- пассивная солнечная система, 7- галечный аккумулятор, 8- заслонки, 9- вентилятор, 10- подача теплого воздуха в здание, 11-подача рециркуляционного воздуха из здания.

4.1 Обзор пассивных систем солнечного отопления

Пассивная система солнечного отопления проста по конструкции и имеет высокую эффективность, система способна обеспечить до 60 % загрузки отапливаемых сооружений /18/.

Сооружение с пассивным использованием теплоты солнечной радиации можно определить как построенную с учетом климатических процессов данной местности систему отопления, использующую строительные элементы, максимально аккумулирующую энергию солнечного излучения для обеспечения микроклимата в помещении, в соответствии с нормами проектирования.

Пассивные гелиосистемы условно разделяют на открытые и закрытые.

В открытых системах лучи солнечного излучения проникают в отопительное помещение через оконные проемы (увеличенных размеров) и нагревают строительные конструкции помещения. Последние при этом являются приемниками и аккумуляторами теплоты.

Такие системы очень просты, но имеют недостатки, а именно: неустойчивость теплового режима; в ряде случаев из-за интенсивной инсоляции возникает некомфортное состояние в помещении; необходимость использования дополнительной нагревательной системы.

В закрытых системах поток солнечной радиации в помещение не проникает, а поглощается приемником солнечной радиации, совмещенного с наружными ограждающими конструкциями. Такая система выполняет как функции основного конструктивного назначения (элементы сооружения), так и функции приема, аккумулирования и передачи теплоты.

Тепловоспринимающая конструкция, как правило, является и аккумулятором теплоты.

Схема сооружения с открытой системой отопления показана на рисунке 4.2. В помещении такого сооружения высока неравномерность суточных температур. При отсутствии инсоляции имеет место резкое охлаждение объема помещения.

Схема закрытой пассивной системы без циркуляции теплоносителя (по проекту А. Е. Моргана) показана на рисунке 4.3. В дневное время поток солнечной радиации нагревает массивную стену сооружения, которая ночью отдает свою теплоту внутреннему объему его. Из-за отсутствия циркуляции воздуха в помещении (или недостаточной циркуляции) внутренний воздух в помещении нагревается неравномерно: около стены теплоприемника воздуха температура наибольшая; при удалении от стены температура его уменьшается значительно.

Аналогично предыдущей является схема пассивного использования теплоты солнечной радиации для отопления, которая спроектирована Г. Хеем. В качестве тепловоспринимающего элемента служит металлическое покрытие, на котором лежат большие черные маты, наполненные водой.

Днем маты с водой открыты для нагрева солнечными лучами. На ночь маты закрываются изолированными панелями с помощью автоматического устройства, которое реагирует на сигнал реостата. Поэтому теплота, аккумулированная матами, передается в основном вниз, т. е. в помещение. Система Г. Хея более эффективно работает в широтах между 45° южной широты и 45° северной широты, в которых солнце находится высоко в небе и где зимы умеренные, а низкие температуры наблюдаются редко.

Примером пассивной закрытой системы с циркуляцией теплоносителя через тепло воспринимающую стену может быть система, приведенная на рисунке 4.4. (солнечный дом Ф. Тромба и Дж. Мишеля). Роль поглотителя и аккумулятора теплоты солнечной радиации играет обращенная на юг массивная бетонная стена дома, покрашенная в темный цвет и отделенная от наружного воздуха одинарным, двойным или тройным остеклением. У верхней и нижней частей стены находятся каналы для циркуляции теплоносителя (воздуха помещения).

Под воздействием солнечного излучения воздух, находящийся в промежутке между стеной и светопроникающим ограждением, нагревается и поступает через верхние каналы в помещение. Этот воздух замещает прохладный, поступающий из помещения через нижние каналы. Тем самым создаются условия для естественной циркуляции воздуха и обеспечивается более равномерная температура в помещении. Ночью, аккумулированная стеной теплота, передается помещению.

В жаркий период года стена Тромба—Мишеля является источником дополнительной теплоты, что создает некомфортные условия для тех, кто находится в помещении. Поэтому целесообразно на наружной поверхности стены уложить тепловую изоляцию, а в межстекольном пространстве — тепловоспринимающий экран из материала с высокой теплопроводимостью, чтобы теплота могла свободно передаваться в пространстве между экраном и стеной. Тепловоспринимающий экран нагревается до температуры 0...120°С и вследствие этого естественная конвекция воздуха становится интенсивной. Тепловые потери при этом сводятся до минимума. В жаркий период тепловая изоляция на наружной поверхности стены предотвращает дополнительное нагревание помещений.

Интенсивное движение воздуха около пола помещения и особенно вблизи канала и стены является источником дискомфорта у людей и может влиять на состояние их здоровья. Поэтому перед выходным отверстием необходимо установить защитный экран.

Заслуживает внимания предложение Д. Шахурди. Пространство между светопроникающим ограждением и стеной рекомендуется выполнить достаточно большим, с тем чтобы использовать его для выращивания растений. Стекла покрыты тонкой пленкой, в которой коэффициент проникновения солнечного луча меняется в зависимости от температуры. При низкой температуре пленка пропускает около 95 % солнечной радиации, если последняя падает на нее под прямым углом. В теплом состоянии она малопрозрачна. В результате солнечная теплота поступает в теплицу не только в солнечную, но и в холодную погоду.

Опыт эксплуатации сооружений с системой отопления Тромба—Мишеля доказал, что поступление теплоты от солнечной радиации на южную и восточную стены в ясный день может покрыть суточные тепловые потери здания. Пассивные гелионагреватели в основном компенсируют тепловые потери сооружения, но для этого необходимо достаточное число ясных дней в отопительный период. Практически пассивная система отопления станет рентабельной при числе ясных дней не менее 60...70 % общего количества дней отопительного периода. В пасмурные дни эффективность пассивной системы уменьшается на 50...60 % относительно номинальной, по сравнению с ясными днями, и в результате этого доля системы в общем балансе энергосбережения незначительна. В этом случае необходимый микроклимат поддерживают или с помощью традиционного источника отопления (например, электрокотельные) или аккумулятора теплоты.

Аккумулирование теплоты значительно повышает эффективность и надежность пассивной системы. Аккумуляторы размещают или в земле (рис. 4.5., а) или внутри сооружения (рис. 4.5., б). В первом случае необходимо наличие вентилятора для подвижности воздуха. Размещение аккумулятора в объеме здания дает больший эффект, так как теплота не теряется в окружающую среду, но такой аккумулятор плохо вписывается в сооружение.

4.2 Расчет отопления

4.2.1 Расчет нагрузки отопления

Исходные данные:

Расчетная нагрузка Рот расч= 30 кВт.

Число градусо-дней отопительного периода. D=7067,9

Тепловую нагрузку отопления дома определяем по формуле /9/:

 (4.1.)

где UA – полный коэффициент теплопотерь здания:


 (4.2.)

где Тнар расч – расчетная температура наружнего воздуха, принимается -370С, Твн – внутренняя температура в здании, по нормам СНиП принимается 180С.

 

Данные нагрузки отопления по месяцам сводим в табл. 4.1.

Таблица 4.1 Расчет нагрузки отопления

Месяц

Среднемесячная температура, С0

Месячная сумма градусодней

Нагрузка отопления,

кВт*ч

Нагрузка отопления,

Гкал.

I -22,5 1255,5 16560 14,2
II -20,8 1086,4 14340,5 12,3
III -12,9 957,9 12644,3 10,8
IV -2,6 618 8157,6 7
V 4,0 434 5728,8 4,9
VI 10,7 219 – 2890,8 2,3
VII 14,8 99,2 – 1309,4 1,1
VIII 14,4 108 – 1425,6 1,2
IX 8,2 294 3880,8 3,3
X 0,7 536,3 7079,16 6,1
XI -8,9 807 10652,4 9,1
XII -16,8 1078,8 14240,2 12,2

7067,9

93283,7

79,9


4.2.2 Расчет теплопроизводительности пассивной солнечной системы

Исходные данные: В качестве пассивной солнечной системы используем отдельную оранжерею и расположим ее вдоль стены дома с юга – западной стороны, длинной 13,6 м.

S=13,6*5,1=69,4 70 м2.

Количество теплоты, поступающей из теплоприемника определяем по формуле:

 (4.3.)

где а – длина стены, где расположен теплоприемник;

(mCр)погр – масса пограничного слоя воздуха;

(mCр)погр = 3600** * Vср на 1 м ширины абсорбера (4.4.)

где  - ширина пограничного слоя;

Vср = 0,9-1 м/с;

С = 1кДж/кг/град;

(mCр)погр =64,8 кДж/м2* 0С на 1 м ширины абсорбера.

Расчетные данные сведены в таблицу 4.2.


Таблица 4.2 Количество полезного тепла, полученного ПСС

Месяц

Кол-во

ясных

дней

Кол-во Qпол, кВт*ч

Кол-во п/ясн. дней

Кол-во Qпол кВт*ч

Qпол

всего за

месяц

Нагрузка

Отопле-ния

% замещ
за ясный день за ясные дни За п/ясн. день

В п/ясн.

дни

I 20,8 79,5 1653,6 6,2 62,5 387,3 2040,8 16560 12,3
II 23,0 141,6 3256,8 4,4 108,3 476,5 3733,3 14340,5 26,0
III 25,2 170,7 4301,6 5,7 124,9 711,9 5013,5 12644,3 36,6
IV 18,7 199,9 3738,1 7,9 145,7 1151,0 4889,1 8157,6 60,0
V 16,6 204,0 3386,4 7,3 170,7 1246,1 4632,5 5728,8 80,8
IX 11,1 187,4 2080,1 9,0 108,3 974,7 3054,8 3880,8 78,7
X 10,2 183,2 1868,6 12,9 91,6 1181,6 3068,2 7079,16 43,3
XI 7,0 108,3 758,1 16,3 66,6 1085,6 1843,7 10652,4 17,3
XII 7,6 79,1 601,1 15,8 62,5 987,5 1588,6 14240,2 11,2
 Всего: 29864,5 93283,7 32,0

4.2.3 Определение объема галечного аккумулятора

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


© 2010 СБОРНИК РЕФЕРАТОВ